Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Живые вирусные вакцины

    Живые вирусные вакцины [c.161]

    Живые вирусные вакцины, применяемые в настоящее время [c.161]

    Следует отметить, что, за исключением аденовирусной вакцины, каждая из разрешенных в настоящее время живых вирусных вакцин, направлена против вируса со сложным патогенезом инфекции, при котором вирус попадает в организм [c.162]

    Встречаюш.иеся в природе мутанты реовируса с измененной тропностью к ЦНС могут быть выделены экспериментально путем отбора вируса с измененным капсидным белком 51 — аналогом УР1 вируса полиомиелита [175]. 51 участвует в адсорбции вируса на клетках хозяина и представляет собой главную мишень для нейтрализующих антител [45, 193]. Мутанты реовируса, которые резистентны к действию нейтрализующих моноклональных антител, направленных против 51, обладают пониженной тропностью к специфическим участкам мозга экспериментально зараженных мышей [174]. Однако эти мутанты с измененным белком 51 нормально размножаются во внутренних органах мышей. Отобранные с помощью моноклональных антител мутации поверхностного гликопротеина вируса бешенства также могут приводить к аттенуации вируса для ЦНС [29, 33, 47],, причем у мутантов возможны реверсии к вирулентности, свойственной дикому типу вируса [47]. Эти наблюдения свидетельствуют о том, что вирус со сложным патогенезом, включающим в себя репликацию в месте проникновения и последующее распространение, может быть аттенуирован избирательным изменением сродства к органу-мишени. Неизвестно, является ли этот механизм главным или вообще единственным для аттенуации живых вирусных вакцин, используемых в настоящее время. Следует подчеркнуть, что к аттенуации ведет ограничение любой существенной функции вируса. Таким образом, мутация, которая снижает вирулентность, может возникнуть почти в каждом гене. [c.165]


    Преимущества живых вирусных вакцин [c.166]

    Большинство работ по созданию живых вирусных вакцин проводились на ВКО, однако в качестве кандидатов на роль векторов для вакцинации рассматриваются и другие вирусы аденовирус, полиовирус и вирус ветряной оспы. Вектор на основе живого аттенуированного полиовируса (его исследования только начинаются) привлекателен тем, что позволяет проводить пероральную вакцинацию. Такие слизистые вакцины (вакцины, компоненты которых связываются с рецепторами, расположенными в легюгх или желудочно-кишеч-ном тракте) пригодны для профилактики самьгх разных заболеваний холеры, брюшного тифа, фиппа, пневмонии, мононуклеоза, бешенства, СПИДа, болезни Лайма. Но до любых клинических испытаний любого на первый взгляд безобидного вируса как системы доставки и экспрессии соответствуюхцего гена необходимо убедиться в том, что он действительно безопасен. Например, повсеместно используемый ВКО вызывает у людей осложнения с частотой примерно 3,0-10 . Поэтому из генома рекомбинантного вируса, который предполагается использовать для вакцинации человека, желательно удалить последовательности, ответственные за вирулентность. [c.242]

    Генетическое перераспределение было также использовано для передачи определенных темнературочувствительных (ts) или са-повреждений живым вирусным вакцинным штаммам [119]. В этом случае, конечно, предварительные генетические манипуляции приводили к выделению и изучению соответствующих ts- или са-му-тантов. [c.24]

    Основным преимуществом живых вирусных вакцин является то, что они активируют все компоненты иммунной системы, вызывая сбалансированный ответ системный и местный, причем каждый из них состоит из иммуноглобулинового и клеточного ответов. Это особенно важно для инфекций, при которых важную роль играет клеточный иммунитет, а также для инфекций слизистых оболочек, при которых для оптимальной устойчивости необходим как местный, так и системный иммунитет. Местное инфицирование живой вирусной вакциной у непрайми-рованного хозяина обычно более эффективно стимулирует местный ответ, чем парентеральное введение инактивированной вакцины [12, 100, 136—139]. Живые вирусные вакцины стимулируют иммунный ответ на каждый из защитных антигенов, и это устраняет трудности, возникающие в связи с избирательным разрушением одного из защитных антигенов, которое может произойти в процессе приготовления инактивированной вакцины. [c.166]

    Всегда существует вероятность присутствия в вакцинах случайных живых агентов. К счастью, это редко становится проблемой. Некоторые ранние серии живой полиовирусной вакцины были контаминированы живым вирусом SV40, но этот вирус быстро удалили, и все последующие серии вакцины были свободны от него [68]. Живая вакцина против желтой лихорадки сначала содержала вирус лейкоза птиц, но впоследствии ее удалось очистить от этого агента [161]. В длительных наблюдениях за индивидуумами, которые получили живую вакцину, конта-минированную вирусом SV40 или вирусом птичьего лейкоза, не было обнаружено каких-либо отрицательных долгосрочных эффектов, связанных с этими посторонними вирусами, например заболеваний раком [118, 190]. Тем не менее благоразумие требует, чтобы живые вирусные вакцины были свободны от подоб- [c.166]


    НЫХ загрязнений. Некоторые живые вирусные вакцины, такие как вакцинные варианты вирусов кори, краснухи и желтой лихорадки, сохраняют низкий уровень остаточной вирулентности. Реакции, вызываемые такими вакцинами, незначительны, и поэтому эти препараты широко используются. Наиболее серьезная проблема заключается в восстановлении вирулентности в ходе инфекции, вызванной вакцинными вирусами. Для полиовирусной вакцины это наблюдается чрезвычайно редко 1 случай на 10 —10 иммунизаций [127]. Значительная часть паралитических заболеваний, связанных с вакцинным вирусом, наблюдается у лиц с дефектной иммунной системой, и это может быть не связано с проявлением генетических изменений вакцинного вируса [116]. В ряде случаев вакцинный вирус вновь приобретает вирулентность и вызывает заболевание у вакцинированного или у близко контактировавших с ним [76]. [c.167]

    Миссенс-мутации возникают в результате замены оснований в вирусном геноме и отражаются в замене аминокислот в соответствующем участке кодируемого вирусного белка. Часто мутации этого типа можно идентифицировать прямо по наблюдаемым изменениям пораженного белка или косвенно — по изменениям сложной вирусной функции, связанной с измененным белком. Детально исследованы два типа миссенс-мутантов с легко определяемыми фенотипами, причем их проверяли на вирулентность и на потенциальную пригодность для получения аттенуированных мутантов, которые можно было бы использовать в качестве живых вирусных вакцин. К lПepвo y типу от- [c.169]

    В качестве живых вирусных вакцин обычно используют аттенуированные (ослабленные) варианты вирусов, которые являются утратившими большинство свойств патогенности мутантами исходных штаммов. В редких случаях удается найти близкородственный слабопатогенный вирус, вакцинация которым обеспечивает иммунную защиту от другого опасного вируса (например, вакцинация вирусом оспы коров против натуральной оспы). Главное пре-имуш ество живых вакцин состоит в том, что они активируют все компоненты иммунной системы, вызывая сбалансированный иммунный ответ. Кроме того, такие вакцины относительно дешевы, так как для иммунизации требуется небольшая доза вируса, поскольку он размножается в зараженном организме. [c.434]


Смотреть страницы где упоминается термин Живые вирусные вакцины: [c.125]    [c.17]    [c.308]    [c.17]    [c.308]    [c.166]    [c.169]   
Смотреть главы в:

Вирусология в 3-х томах Т 2 -> Живые вирусные вакцины




ПОИСК





Смотрите так же термины и статьи:

Вакцины

Вирусные вакцины



© 2025 chem21.info Реклама на сайте