Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации миссенс

    А. Приемлемые миссенс-мутации. Примером приемлемых миссенс-мутаций в структурном гене - [c.99]

Рис. 40.5. Примеры трех типов миссенс-мутаций, ведущих к появлению аномальных -цепей гемоглобина. На рисунке указаны аминокислотные замены и возможные замены в соответствующих кодонах. У гемоглобина Хикари -цепь обладает практически нормальными физиологическими функциями при измененной электрофоретической подвижности. Функция гемоглобина S в результате мутации в -цепи частично утрачена он может связывать кислород, но при деоксигенации выпадает в осадок. В гемоглобине М Бостон в результате мутации в а-цепи ион железа II, входящий в состав гема, окисляется до железа III, что полностью исключает связывание кислорода. Рис. 40.5. Примеры трех типов миссенс-мутаций, ведущих к появлению аномальных -<a href="/info/628965">цепей гемоглобина</a>. На рисунке указаны <a href="/info/508917">аминокислотные замены</a> и <a href="/info/835777">возможные замены</a> в <a href="/info/166527">соответствующих кодонах</a>. У гемоглобина Хикари -цепь обладает практически нормальными <a href="/info/1099025">физиологическими функциями</a> при <a href="/info/74000">измененной электрофоретической</a> подвижности. <a href="/info/178524">Функция гемоглобина</a> S в <a href="/info/1355385">результате мутации</a> в -цепи частично утрачена он может связывать кислород, но при деоксигенации выпадает в осадок. В гемоглобине М Бостон в <a href="/info/1355385">результате мутации</a> в а-цепи ион железа II, входящий в состав гема, окисляется до железа III, что полностью исключает связывание кислорода.

Рис. 4.7. Использование делеции г1589 у фага Т4 позволяет различить нонсенс- и миссенс-мутации. Рис. 4.7. Использование делеции г1589 у фага Т4 позволяет различить нонсенс- и миссенс-мутации.
    Миссенс-мутация (Missense mutation) Мутация, в результате которой кодон, кодирующий какую-либо аминокислоту, изменяется с образованием кодона, кодирующего другую аминокислоту. [c.553]

    Аналогичным образом миссенс-супрессор одного гена скорее всего будет мутатором для другого. Например, если супрессор исправляет эффект мутации, заменяя одну аминокислоту на другую в мутантном сайте, то он будет при этом вводить новую аминокислоту взамен обычной в другом сайте. Поэтому перед клеткой возникает дилемма с одной стороны, она должна супрессировать летальный кодон, с другой-не допустить слишком сильных изменений нормальных значений кодона в других местах. [c.100]

    В. Неприемлемые миссенс-мутации. Неприемлемые миссенс-мутации (рис. 40.5, внизу) приводят к образованию полностью нефункционального гемоглобина. Например, мутация в гене гемоглобина М приводит к тому, что ион Fe входящий в состав гема, окисляется до Fe + и гемоглобин переходит в мет-форму. Метгемоглобин не способен переносить кислород (см. гл. 6). [c.100]

    Все эти мутации вызывают повышенную чувствительность к ультрафиолетовому свету (УФ) и ионизирующей радиации, образование слизистых колоний, неспособность к лизогенизации фагами X- и Р1, а также увеличивают стабильность нонсенс-фраг-ментов и фаговых мутантных белков (миссенс-белков). Чувствительность к УФ не связана с нарушением механизмов репарации (исправления дефектов) ДНК, а является следствием утраты способности к восстановлению клеточного деления после воздействия агентов, повреждающих ДНК. Поэтому мутанты Lon (Deg) после облучения образуют длинные нитевидные клетки, которые в конце концов лизируются. [c.53]

    Наиболее просто устроены РНК-содержащие бактериофаги R 17, f 2, Q и др. Их генетический материал представлен одноцепочечной молекулой РНК. У этих бактериофагов, а также у одноцепочечных ДНК-содержащих фагов было обнаружено перекрывание генов. Эти факты рассматривались в гл. 15. Само перекрывание генов накладывает определенные ограничения на их изменчивость, поскольку одна и та же мутация может оказаться в пределах двух структурных генов и таким образом повреждать две функции. Именно это и было обнаружено при изучении нонсенс-мутанта по гену, кодирующему белок лизиса у бактериофага f 2. Та же мутация привела и к нарушению синтеза репликазы этого фага. Для структурного гена репликазы та же мутация приводила к появлению не нонсенс-аллели, а миссенс-аллели, поскольку перекрывающиеся гены транслируются в разных фазах со сдвигом считывания на один нуклеотид. [c.478]


    Оценки изменчивости кажутся еще более удивительными и даже поразительными, если представить, что большинство замещений аминокислот не связано с изменением заряда. На основании приведенной классификации аминокислот нетрудно показать, что из 380 возможных замещений 130 (или 36%) изменяют суммарный заряд белковой молекулы. Если учитывать только замещения одного основания в ДНК, то из 399 возможных одноступенчатых миссенс -мутаций, не приводящих к избыточности кода, 128 (или 32%) сопровождаются изменением заряда. Эти значения, однако, взяты без учета различий белков по аминокислотному составу. Хотя эмпирические формулы различных белков существенно отличаются друг от друга, после коррекции на аминокислотный состав доля замещений, которые приводят к изменениям заряда, будет равна 26—28%- Но эти расчеты имеют сомнительную ценность, потому что на прак- [c.122]

    МУТАЦИЯ, наследуемое изменение генотипа. Различают точечные М. и крупные перестройки ДНК. К точечным относятся замены одиночных пар оснований ДНК (транзи-ции — замены одного пурина на другой и одного пиримидина на другой, трансверсии — замены пурина на пиримидин и наоборот) и выпадения или вставки одиночных нуклеотидных пар ДНК (мутации со сдвигом рамки считывания). Замена пары оснований может приводить к изменению кодона и послед, замене аминокислоты в кодируемом белке (миссенс-мутация) или же к образованию бессмысленного кодона и прекращению трансляции данной матричной РНК (нонсенс-мутация). К крупным перестройкам ДНК относятся делении (выпадения), дупликации (удвоения), инверсии (повороты на 180°), транслокации (перемещения) участков ДНК, а также инсерции (встраивания) новых сегментов ДНК. Иногда к М. относят изменения числа хромосом в клетке (геномная М.). Различают спонтанные М., возникающие с частотой 10 —10 (отношение числа мутировавших нуклеотидных звеньев к общему числу мономерных звеньев ДНК), и индуцированные, частота к-рых может пре-вьипат . 10 М. могут быть индуцированы хим. (дезаминирующие, алкилирующие и др. реагенты), физ. (ионизирующие излучения) и биол. мигрирующие генетические элементы) мутагенными факторами. Частота и специфичность возникновения спонтанных и индуцированных М. находятся под генетич. контролем. [c.356]

    Мутация 3 - точковая миссенс-мутация, затрагивающая нуклеотид 2,6 т. п. н. Эта мутация устранила сайт разрезания ДНК ферментом Есо R. [c.25]

    Указанная замена аминокислоты может быть результатом трех различных миссенс-мутаций. Используя таблицу генетического кода, определите возможные изменения в некодирующей нити ДНК у организма дикого типа, которые могут привести к замене Met на Не. Рассмотрите случай, когда изменения происходят только на уровне одного кодона. Результаты оформите в виде таблицы (см. образец табл. 32). [c.58]

    На генном уровне изменения первичной структуры ДНК под действием мутаций менее значительны, чем при хромосомных мутациях, однако, генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов - пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нон- [c.277]

    Как показал анализ мутаций, роль этих кодонов in vivo отличается от роли всех остальных кодонов. Точковую мутацию, которая приводит к изменению триплета на кодон для другой аминокислоты, называют миссенс-мутацией. Влияние такой мутации на белок зависит от природы аминокислотной замены. [c.61]

    Мутации типа нонсенс и миссенс впервые удалось разграничить благодаря генетическому тесту, использованному Бензером и Чеймпом (Benzer, hampe) в 1961 г. Существует вариант фага Т4, у которого делегирован промежуток между цистронами гПА и гПВ. В результате оба цистрона соединились воедино, и вместо двух отдельных белков синтезируется один слившийся белок. У этого белка сохраняется активность белка В, несмотря на соединение двух полипептидов. На рис. 4.7 показано, как можно различать нонсенс- и миссенс-мутации в гПА-области. Для этого нужно сконструировать двойной мутант, который кроме исследуемой мутации несет делецию, соединяющую цистроны А и В. Если в г//Л-области возникла миссенс-мутация, то активность г//В-цистрона не будет нарушена. Но если возникнет нонсенс- мутация, синтез белка остановится и полипептид В не синтезируется. [c.61]

    Миссенс-мутации, изменяющие смысл кодона, приводят к замене одной аминокислоты на другую, не способную функционировать в белке вместо исходной. Формально любая замена аминокислоты в белке является миссенс-мутацией, но на практике мутации обнаруживаются только в том случае, если они приводят к образованию неактивного белка. Эти мутации супрессируются в результате включения или исходной, или какой-либо другой аминокислоты, не нарушающей функционирования белка. На рис. 7.12 показано, что это осуществляется таким же образом, как и супрессия нонсенс-кодонов. В результате мутации в антикодоне какой-либо тРНК, несущей подходящую аминокислоту, тРНК становится способной узнавать мутантный кодон. Таким образом, суть миссенс-супрессии заключается в изменении смысла кодона. [c.99]


    Миссенс-супрессоры были получены с помощью ряда тРНК, включающих глицин в ответ на один из кодонов GGN. В одном случае мутация в триптофан-синтазном гене Е. соИ приводила к замене глицинового кодона на [c.99]

    Все рассмотренные случаи супрессии были исследованы на примере Е. соИ. У других бактерий (преимущественно у S. typhimurium) также были выделены похожие мутанты, и это свидетельствует о сходстве ситуаций во всех изученных случаях. Значительно меньше известно о распространенности и возможности супрессии нонсенс-и миссенс-мутаций у эукариот. Супрессоры охра- и ам-бер-мутаций, включающие тирозин, серин или лейцин, были выделены у дрожжей, причем каждый супрессор узнает только свой кодон. Возможно, это достигается благодаря использованию модифицированных оснований в антикодонах охра-супрессоров. [c.100]

    Мутации в четырех кластерах непосредственно влияют на активность белка-цитохрома Ь. Все мутанты такого рода синтезируют нормальную мРНК. Мутации проявляются на уровне трансляции и выражаются в считывании матрицы с ошибками типа миссенс или нонсенс . Ни одна из таких мутаций не комплементирует какую-либо другую в том же или другом кластере. По этому критерию все они находятся в одном и том же гене. Кластеры соответствуют некоторым экзонам, а именно box 4 = Bl, box 8 = ВЗ, box 1 = В4, box 6 = В6 (рис. 20.22). В двух других экзонах мутации не обнаружены, возможно вследствие их малых размеров (В2 = = 14п.н., В5=51 H.H.). Рассмотренные группы мутаций проявляют в точности такие же свойства, какие можно ожидать от прерывистых генов. Фактически это един- [c.258]

    СТО оказываются миссенс-мутациями (мутациями с изменением смысла), в которых последовательность кодирующего триплета оснований после замены кодирует уже другую аминокислоту. Вследствие вырожденности генетического кода аминокислота, кодируемая мутантным геном, часто оказывается сходной с той, которая кодировалась родительским триплетом, в результате чего формируется фенотип ( leaky ) лищь с частично нарушенной функцией (определяемой обычно белком). Такие штаммы имеют тенденцию спонтанно ревертировать к родительскому типу, проявляя таким образом генетическую нестабильность и частичную физиологическую неполноценность. Значительная часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), характеризующиеся тем, что кодирующий какую-либо аминокислоту триплет превращается в триплет, не кодирующий никакой аминокислоты. В этом случае синтез соответствующего белка прерывается на измененном триплете, а образующийся незавершенный фрагмент белковой молекулы, как правило, не способен выполнять предназначенной исходному белку функции. Поэтому нонсенс-мутации фенотипически выражены, а способность ревертировать у них сохраняется. Мутации со сдвигом рамки возникают в случае вставки или делеции одного или нескольких оснований в молекулу ДНК- При этом происходит сдвиг рамки при считывании закодированной информации и как следствие — изменение последовательности аминокислот в белке мутантного штамма. [c.10]

    Фотохимические повреждения могут реализоваться в мутационные изменения генома (миссенс-мутации, нонсенс-мутации, мутации сдвига рамки, супрессорные мутации) за счет возникновения ошибок в ходе следующих основных процессов заполнения бреши ДНК при эксцизионной репарации заполнения бреши ДНК при пострепликационной рекомбинации перескока ДНК-полимеразы через неэлиминированное повреждение при репликации. [c.310]

    А. Приемлемые миссенс-мутации. Примером при- трофоретической подвижности гемоглобина эритро-емлемых миссенс-мутаций в структурном гене Р- цитов практически здоровых людей. У представите- [c.99]

    Б. Частично приемлемые миссенс-мутации. Частично приемлемые миссенс-мутации лучше всего проиллюстрировать на примере ссрповидноклеточ-ного гемоглобина S (рис. 40.5, середина). Миссенс-мутация в 6-м кодоне -цепи гемоглобина приводит к замене глу таминовой кислоты на валин (вместо кодонов GAA или GAG образуются кодоны GUA или GUG). Такая замена мешает нормальному функционированию гемоглобина и в гомозиготном состоянии приводит к серповидноклеточной анемии. Замену глутамина на валин можно расценивать как частично приемлемую, поскольку измененный гемоглобин хотя и аномально, но связывает и высвобождает кислород. [c.100]

    Даже замена одной аминокислоты на другую в результате так называемых миссенс-мутаций, сильно нарушает стабильность белков. Применение иммунологических методов показало, что около половины таких мутаций, полученных в гистидиновом опероне. S. typhimurium, приводят к деградации мутантных ферментов. Оказалось также, что у многих температурно-чувствительных мутантов утрата функции при повышении температуры связана с протеолизом измененных белков. [c.52]

    Почему фреймшифт мутации чаще, чем миссенс мутации, приводя к утрате белком своей функции  [c.56]

    Вероятно, на самом деле последствия таких мутационных замен аминокислот могут быть более значительными. Начнем с того, что внимание исследователей, изучающих свойства мутантных ферментов, как правило, целиком направлено на изучение влияния мутаций на его основную активность. При этом не учитывается возможность появления новой ферментативной активности, которая остается незамеченной просто потому, что исходно неизвестно, появления какой активности следует ожидать. А между тем при ближайшем рассмотрении такие последствия почти любой миссенс-мутации (точковой мутации, которая приводит к замене одного осмысленного кодона на другой) в структурной части гена, кодирующего полипептидную цепь, кажутся весьма вероятными. Действительно, в природе, по-видимому, не существует ферментов с абсолютной субстратной специфичностью, и полифункциональность является изначальным и фундаментальным свойством сложных полипептидов. Какой бы узкой ни была субстратная специфичность ферментов по отношению к природным субстратам, для них всегда можно синтезировать искусственные субстраты, расширяющие их субстратную специфичность. Полифункциональность описана для многих природных белков. Например, кристаллины (одни из основных белков хрусталика глаза позвоночных) у млекопитающих являются одновременно малым белком теплового шока неизвестной функ- [c.447]

    Таким образом, проведенное молекулярно-генетическое исследование торзионной дистонии показало, что выявленные ранее на клиническом уровне две формы заболевания являются по сути двумя разными генетическими болезнями, связанными с дефектами двух разных генов. В одном случае (при дофа-зависимой дистонии) болезнь определяется дефектами гена ГТФ циклогидролазы-1, причем оказалось, что данный тип патологии характеризуется чрезвычайно высокой молекулярно-генетической гетерогенностью - практически каждая изученная семья или спорадический случай заболевания характеризуется своей мутацией (как правило - миссенс-мута-цией) и мутации очень редко повторяются у неродственных больных. Не удалось также обнаружить какую-либо закономерность в расположении мутаций по длине гена и соответственно кодируемогс им белка. [c.315]


Смотреть страницы где упоминается термин Мутации миссенс: [c.98]    [c.99]    [c.99]    [c.100]    [c.99]    [c.99]    [c.100]    [c.199]    [c.200]    [c.402]    [c.402]    [c.56]    [c.307]    [c.324]    [c.324]    [c.88]   
Гены (1987) -- [ c.0 ]

Искусственные генетические системы Т.1 (2004) -- [ c.277 ]




ПОИСК







© 2024 chem21.info Реклама на сайте