Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иммунная система узнавание

    Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков. Высокая специфичность взаимодействия антител с антигенами (чужеродными веществами) по типу белок-белковое взаимодействие способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков плазмы крови, в частности фибриногена, к свертыванию. В результате свертывания фибриногена образуется сгусток крови, предохраняющий от потери крови при ранениях. [c.21]


    Наиболее выпукло способность к узнаванию выражена у белков иммунной системы — уже упоминавшихся в 1.4 иммуноглобулинов, или антител. Иммуноглобулины определенной специфичности начинают активно вырабатываться организмом в ответ на появление чужеродного антигена и обладают способностью избирательно связывать именно этот антиген. Если в роли антигена выступает большая молекула, например молекула белка, то антитело опознает не всю молекулу, а некоторый ее участок, называемый антигенной детерминантой. Белковые молекулы обычно имеют серию антигенных детерминант, и уже по этой причине в ответ на появление в организме чужеродного белка вырабатывается целый набор антител, направленных на разные детерминанты. Более того, к каждой детерминанте вырабатывается, как правило, несколько различных иммуноглобулинов. Поэтому даже иммуноглобулины, специфичные к одному определенному антигену, представляют собой не индивидуальные белки, а смесь большого числа сходным образом построенных молекул. А так как организм непрерывно встречается с разнообразными антигенами, то фракция иммуноглобулинов сыворотки крови представляет собой смесь огромного числа различных антител, причем содержание каждого из них, как правило, очень мало. Трудность выделения индивидуальных иммуноглобулинов долгое время была препятствием для их биохимического исследования, в том числе для установления их первичной структуры. [c.38]

    Процесс соответствующих взаимодействий, имитирующих те, которые доминируют в биохимических процессах и относящихся к нековалентным, получил название "молекулярное узнавание". Молекулярное узнавание можно определить как процесс, включающий в себя как связывание, так и выбор молекулы - "гостя" данной молекулой -"хозяином". Просто связывание молекул не является молекулярным узнаванием. Согласно Лену [4], "узнавание - это связывание с целью". Данное поведение характерно для многих биохимических процессов, таких как ферментативные реакции, связывание "рецептор-субстрат", сборка белковых молекул, иммунное взаимодействие антиген-антитело, транспорт через мембрану и т.д. Одним из критериев молекулярного узнавания является то, что константа ассоциации между "хозяином" и "гостем" является значительно более высокой по сравнению с константами образования комплексов между другими молекулами, присутствующими в системе. В связи с этим особое значение приобретает исследование энергетики межмолекулярных взаимодействий биомолекул. Энергетические параметры позволяют судить о силе взаимодействия, наличии или отсутствии ассоциации между молекулами, а также выявить и описать влияние растворителя на процесс молекулярного узнавания. [c.185]


    Клетки иммунной системы специализируются на химическом узнавании [c.50]

    Антитела, вырабатываемые иммунной системой, связывают попадающие в организм чужеродные белки, полисахариды и ряд других соединений, которые называются антигенами. Млекопитающие могут продуцировать до 10 различных антител. Узнавание антигенов обеспечивают два основных класса лимфоцитов — клеток, образующихся в костном мозге Т-лимфоциты, локализованные в зобной железе (тимусе), и В-лимфоциты, дифференцирующиеся в селезенке и лимфоидных органах. [c.433]

    Утилизация погибших старых клеток крови требует постоянной напряженной работы фагоцитирующих клеток селезенки. Вместе с этой функцией селезенка выполняет роль важнейшего лимфоидного органа. Ее белые клетки эффективно осуществляют функцию узнавания чужеродных антигенов, оказавшихся в крови, а также развивают иммунную реакцию прОтив распознанных антигенов. Суть реакции — выработка средств, эффективно обезвреживающих именно эти антигены. Какие же это средства Какими видами оружия располагает иммунная система  [c.14]

    Для постоянного надзора за антигенным составом клеток и жидких сред организма иммунная система должна уметь различать чужое и свое . Этой способностью наделены лимфоидные клетки. Их поверхность снабжена датчиками (рецепторами) которые специфически связывают чужие антигены. При этом на каждой клетке представлено много одинаковых рецепторов, ориентированных на узнавание одного-единственного антигена. [c.35]

    Учитывая, что иммунная система эволюционировала как механизм, предотвращающий микробную инфекцию, можно отметить два очевидных преимущества ассоциативного узнавания МНС. Во-первых, оно фокусирует внимание Т-лимфоцитов на клеточных поверхностях. Например, связывание цитотоксическими Т-клетками свободного вируса (нли раство жмых вирусных антигенов) было бы неэффективно, так как рецепторы оказались бы занятыми и не могли бы разрушать инфицированные вирусом клетки. Во-вторых, оно может обеспечивать то, чтобы каждая категория антигенов вызывала иммунный ответ надлежащего типа например, цитотокснческие Т-клетки не могут обезвреживать чужеродные растворимые макромолекулы (бактериальные токсины и т.п.) и убивать бактерии или другие микроорганизмы, поэтому способность узнавать соответствующие антигены была бы для них совершенно ненужной. [c.62]

    Т-хелперы и Т-супрессоры, по-видимому, совместпо контролируют активность В-клеток и цитотоксических Т-клеток - главных эффекторных клеток иммунной системы Т-хелперы воздействуют па эти эффекторные клетки прямо, а Т-супрессоры, как полагают, косвенно -путем подавления функции Т-хелперов, от которых зависят эффекторные клетки, хотя механизм гакого по давления неизвестен. Как Т-супрессоры узнают Т-хелперы, которые они суирессируют В свете того, что нам известно о механизме узнавания чужеродных антигенов хелперами (разд. [c.278]

    Гипотеза совместного узнавания МНС позволяет также объяспрггь необычайный полиморфизм молекул МНС. В эволюционном противоборстве между микробами и иммунной системой позвоночных микробы будут проявлять тенденцию к изменению своих антигенов, чтобы избежать ассоциации с молекулами МНС. Если какое-нибудь изменение окажется в этом смысле эффективным, новая форма сможет широко распрострапиться и вызвать эпидемию или эпизоотию. При таких обстоятельствах те пемпогие особи вида-хозяипа, у которых окажется новая молекула МНС, способная связываться с измененным антигеном микроорганизма, получат большое селективное преимущество Кроме того, у особей, имеющих два разных аллеля для каждой молекулы МНС (т. е. у гетерозигот), будет больше шансов противостоять инфекции, чем у особей с идентичными аллелями в каждом данном локусе МНС. Таким образом, отбор будет способствовать усилению и поддержанию большого разнообразия молекул МНС в популяции. [c.281]

    Среди множества проблем иммунологии, одну из них, если иметь в виду прежде всего чисто познавательный аспект этой области биологических знаний, следует отнести к самой фундаментальной, поскольку во многом она определяет возможность решения остальных. Эта проблема связана с изучением на атомно-молекулярном уровне механизмов узнавания и ответных реакций иммунной системы на появление в организме инфекционных антигенов - чужеродных белков, вирусов, бактерий, патогенных веществ. Важный шаг в познании принципов функционирования иммунной системы был сделан в 1959 г. Ф. Бер-нетом, разработавшим так называемую теорию клональной селекции, которая и по сей день пользуется всеобщим признанием [265]. Первоначально теория имела сугубо гипотетический характер. Однако заложенные в ней идеи оказались плодотворными и она вскоре смогла стать для экспериментальных исследований не только системой основополагающих научных принципов, но и конкретной программой поиска. В настоящее время эта программа выполнена и сегодня теория клональной селекции представляет собой скорее констатацию надежно установленных фактов, чем концептуальную основу дальнейшего развития иммунологии [266]. Специфичность антигенной реакции лимфоцитов, согласно теории Бернета, обусловлена наличием на поверхности Т- и В-клеток рецепторных белков, избирательно взаимодействующих с определенными антигенами. Связывание с ними рецепторов активирует клетку и вызывает ее эффективное размножение. Таким образом стимулируется пролиферация лимфоцитов, содержащих на своих поверхностях именно те рецепторы, которые, с одной стороны, комплементарны чужеродному антигену, а с другой - могут адекватно сигнализировать клетке о необходимости антиген-специфцч-ного ответа. По теории клональной селекции иммунную систему образуют миллионы различных клеточных семейств или клонов, каждый из которых состоит из Т- или В-лимфоцитов, имеющих общих предшественников. Так как во всех случаях клетка-предшественница детерминирована к синтезу определенного антиген-специфичного белка рецептора, то все клетки одного клона имеют одинаковую антигенную специфичность и, следовательно, могут ответить на сигнал рецептора только одним, присущим клеткам лишь данного клона, способом. Антигенами, как правило, являются белки и полисахариды. На поверхности этих молекул имеются участки, называемые антигенными детерминантами или эпитопами, которые предрасположены к взаимодействиям с антигенсвязывающим участком антитела В-лимфоцита или 3 67 [c.67]


    Среди продуктов иммунной системы и в составе самих ее элементов имеется множество разнообразных химических соединений, которые, действуя в растворенном состоянии или на клеточных поверхностях, вызывают различные физические эф-фекты. Агглютинация, фагоцитоз, лизнс, преципитация, адгезия и узнавание — все это физические процессы, так как они обусловлены действием физических сил на определенные объекты, а не перестройкой химических связей. Все эти процессы на молекулярном уровне происходят при участии сил Ван-дер-Ваальса, без образования ковалентных связей. Методы, используемые физикой поверхностей, позволяют измерять силы ВаН Дер Ваальса, и поэтому онн пригодны для изучения физических последствий иммунологических процессов. Хотя прдмое применение методов физики поверхностей в иммунологии по существу еще только начинается, уже сейчас очевидно, что-этот подход может многое дать для понимания ряда очень-сложных на первый взгляд явлений. [c.122]

    Углеводы на поверхности клетки могут играть также важную роль в межклеточ-ном узнавании. От узнавания клетками друг друга зависят такие, например, процессы, как формирование тканей путем взаимодействия различных клеток или распознавание чужеродных клеток иммунной системой высших организмов. Углеводы обладают по- [c.215]

    Защита организма от чужеродных биоиолимеров и, тем самым,, от инфекционных микроорганизмов осуществляется посредством клеточного и гуморального иммунитета (см. 17.9). Во втором случае иммунитет определяется взаимодействием антител (АТ) — особых белков, производимых лимфатическими клетками,— с чужеродными биополимерами, именуемыми в зтом случае антигенами (АГ). Иммунный ответ, т. е. появление антител в организме, есть результат узнавания антигенов определенными популяциями лимфоцитов. Процесс развивается на уровне организма, в нем участвуют различные клеточные узнающие системы, являющиеся обучающимися , так как они приобретают память об однажды введенном антигене и отвечают на его вторичное введение усиленной выработкой антител. [c.122]

    Заканчивая эту главу, отметим, что мы здесь подходили к проблеме противоопухолевой защиты только с точки зрения действия специфических иммунных сил. Из исследования моделей как будто бы следует, что против, спонтанных, слабоантигенных опухолей практически нет иммунной защиты. Однако сравнительно редкб наблюдаемое развитие неоплазмы указывает на то, что система надзора должна существовать. И действительно, в последние годы большие надежды в этом плане возлагаются на естественную резистентность , связанную с противоопухолевым действием так называемых натуральных киллеров (НК) [33]. Эти клетки, в отличие от специфически действующих Т-лимфоцитов, поражают раковые клетки всевозможной специфичности. Клетки НК пред-существуют в организме в больших количествах (I—2% всех лимфоцитов), поэтому лизис ими опухолевых клеток начинается сразу же, без латентного периода, тогда как для развития популяции Т-киллеров нужны дни и даже недели. К сожалению, возможность-этой системы защиты ограничена, она действует только против малых опухолей. При больших количествах опухолевых клеток начинается противоположная реакция — инактивация и даже лизис НК-клеток опухолевыми [34, 35]. Тем не менее, роль НК в организме значительна именно в смысле противоопухолевого надзора. Самое существенное при этом — способность НК узнавать опухолевые клетки независимо от их антигенности. По-видимому, в основе процесса узнавания клетки-мишени для НК лежит реакция на изменение свойств клеточной мембраны. В следующей главе мы как раз и будем обсуждать свойства мембран злокачественных клеток, отличающие их от нормальных. [c.138]

    Ключ к пониманию этой взаимосвязи заключается в структуре мембранных белков. Это одноцепочечные полипептиды, молекулярная масса которых достигает 800 кДа, Весовое соотношение белковых компонентов и липидов в составе большинства плазматических мембран колеблется от I 4 до 4 1 в зависимости от ткани и возраста организма (Като, 1990). При рассмотрении процессов клеточной саморегуляции участки цепей этих белков, находящиеся на внешней стороне мембраны, называют клеточными рецепторами, На фанице раздела мембрана—внешняя среда в сфуктуре белка могут также существовать так называемые шарнирные области с высоким содержанием пролина и лейцина, которые позволяют внешней цепи (рецептору) совершать вращательные движения и подсфаиваться под положение лигандной молекулы (Кульберг, 1987), При изучении процессов клеточного узнавания и формирования иммунного ответа внешние части мембранных белков, чаще всего гликозилированные, называют маркерами клеточной дифференциации (или клеточными детерминантами) и классифицируют по системе D (Ярилин, 1999). [c.118]

    Поразительная способность к узнаванию делает иммунную систему почти уникальной среди клеточных систем, более сложной оказывается только нервная система. Обе системы состоят из очень большого числа фенотипически различающихся клеток, организованных в сложные сети. В пределах такой сети между отдельными клетками возможны как положительные, так и отрицательные взаимодействия, причем ответ одной клетки распространяется в системе и сказывается на многих других клетках. В отличие от сети нейронов, относительно жестко [c.282]


Смотреть страницы где упоминается термин Иммунная система узнавание: [c.91]    [c.445]    [c.282]    [c.207]    [c.373]    [c.278]    [c.282]    [c.114]   
Биохимия Том 3 (1980) -- [ c.360 ]




ПОИСК







© 2025 chem21.info Реклама на сайте