Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутаминовая кислота как нейромедиатор

    Нейромедиаторы (норадреналин, дофамин, глутаминовая кислота, аминомасляная кислота, глицин, олигопептиды), вызывающие появление потенциала действия на клетке, синтезируются в нервных окончаниях. и накапливаются в везикулах, окруженных мембраной (рис. 37). Везикула может передвигаться в нервном окончании. Попадая в так называемый участок выброса медиатора , везикула разрывается,- и ее содержимое изливается в синаптическую щель. Нейромедиатор диффундирует через эту щель, связывается с рецептором на постсинаптической мембране, а активированный рецептор вызывает пассивный вход Са - - и Ыа-ь в клетку. В одном синаптическом пузырьке содержится всего несколько тысяч молекул медиатора. Такое количество нейромедиатора может активировать лишь малую долю синаптических рецепторов. Поэтому разрыв одной [c.103]


    В настоящее время установлено, что помимо ацетилхолина нейромедиаторами являются норадреналин, адреналин (у амфибий) и у-ами-номасляная кислота (ГАМК). Известно также большое количество соединений — кандидатов на роль медиаторов. К ним относятся дофамин, 5-окситриптамин (серотонин), глутаминовая кислота и глицин, в пользу медиаторной функции которых накапливается все больше данных. В отношении других соединений, таких, как аспарагиновая кислота, таурин и ряд пептидов, в том числе гипоталамические либерины, вопрос окончательно еще не решен [58]. Возможно, что список несомненных нейромедиаторов будет быстро расти. Принято считать, что каждый отдельный нейрон высвобождает только один медиатор. Однако в настоящее время существуют некоторые сомнения относительно этого тезиса. [c.335]

    Глутаминовая кислота относится к важнейшим возбуждающим медиаторам в центральной нервной системе (ЦНС) беспозвоночных и, вероятно, играет важную роль и в нервной системе человека. Не исключено, что аспарагиновая кислота также является нейромедиатором. Как у-аминоиасляная кислота, так и глицин считаются основными тормозными медиаторами. Еслн возбуждающие медиаторы вызывают деполяризацию постсинаптической мембраны, то тормозные медиаторы способствуют гиперполяризации, по-виднмому, путем увеличения проводимости мембран в отношении К и С1 . В результате в присутствии тормозных медиаторов возбуждение постсинаптической мембраны происходит с большим трудом, чем в их отсутствие. [c.335]

    В результате декарбоксилирования глутаминовой кислоты образуется у-аминомасляная кислота (ГАМК) - тормозный нейромедиатор, влияющий на передачу импульсов в нервной системе. При этом глутаминовая кислота и ГАМК действуют как антагонисты первая активирует, а вторая ингибирует передачу нервных импульсов. В результате декарбоксилирования гистидина получается гистамин, который образуется в организме в ответ на действие аллергенов и вызывает аллергические реакции, вследствие чего лекарственные средства против аллергии получили название антигистаминных препаратов. Поскольку антигистаминные препараты тормозят декарбоксилирование гистидина, аллергические реакции ослабевают. Кроме того, гистамин образуется также и при болевых реакциях. [c.16]

    Химические типы нейромедиаторов (рис. 8.29). В качестве нейромедиаторов в мозге используется несколько соединений синапсы специализируются на одном типе медиатора. Наиболее изученные на сегодняшний день медиаторы-норадреналин (адренергические синапсы) и ацетилхолин (холинер-гические синапсы). Этот факт можно объяснить чисто методическими причинами указанные медиаторы можно исследовать в клетках периферической нервной системы. Например, нейроны симпатической нервной системы являются адренергическими, нейроны парасимпатической нервной системы-холинергическими. Однако в мозге эти два типа синапсов вместе принадлежат лишь небольшой части всех нейронов в качестве нейромедиаторов здесь действует ряд аминокислот (гистамин, глутаминовая кислота, аспарагиновая кислота, глицин и другие). Существенным для синаптической активности является не только синтез, но и процесс инактивации медиатора. На рис. 8.29 представлены основные их типы. [c.121]


    Глутамат и аспартат. Функцию медиаторов выполняют и некоторые аминокислоты. Важнейшие представители этой группы медиаторов — глутаминовая кислота (глутамат) и близкая к ней аспарагиновая кислота (аспартат). Эти вещества являются широко распространенными продуктами промежуточного обмена во всем организме, в том числе и в мозге поэтому могло бы показаться, что они вряд ли способны играть роль специфических нейромедиаторов. Однако в работах ван Харре-вельда и Мендельсона (1959) и в более поздних исследованиях было показано, что глутамат служит химическим передатчиком в нервно-мышечных синапсах ракообразных (см. гл. 18). Хотя в опытах на головном мозге нельзя получить столь же убедительные результаты, получено много данных в пользу того, что и здесь глутамат и (или) аспартат могут служить медиаторами возможно, они высвобождаются из окончаний некоторых проекционных нейронов (см. рис. 25.8Д) и оказывают кратковременное возбуждающее действие. [c.177]

    Если бы все возбуждающие и тормозные сигналы в нервной системе были направлены описанным образом на единичные клетки, можно было бы обойтись очень небольшим числом сигнальных веществ. Однако в действительности в мозгу позвоночных уже обнаружено более 30 таких веществ, в том числе ацетилхолин, аминокислоты [глицин, аспарагиновая кислота, глутаминовая кислота, у-аминомасляная кислота (ГАМК)], производные аминокислот (норадреналин, дофамин, серотонин и гистамин) и разнообразные пептиды. Это может означать, что многие сигнальные молекулы функционируют не как обычные нейромедиаторы, а как локальные химические медиаторы (нейрорегуляторы), которые, освобождаясь из нервных окончаний, диффундируют на небольшое расстояние и влияют на множество находящихся поблизости клеток. Строго говоря, такая сигнализация не является синаптической (одно окончание-одна клетка-мишень), поэтому для обеспечения специфичности необходимо большое число сигнальных веществ (и комплементарных им рецепторов), как в эндокринной системе. [c.254]

    Лолагают, что более 70% стимулирующих центральных синап-использует в качестве нейромедиатора глутаминовую кислоту. [c.171]

    Данные о функционировании глутаминовой и аспарагиновой аминокислот в качестве возбуждающих нейромедиаторов позвоночных и членистоногих довольно обстоятельны, хотя для глутамата они гораздо убедительнее. Известны мощные нефизиологические агонисты этих медиаторов, такие, как каиновая кислота — нейротоксин из японской водоросли, являющийся структурным аналогом глутамата (рис. 8.26). Отмечена также высокая концентрация глутамата во всей центральной нервной системе, и полагают, что он представляет собой наиболее распространенный возбуждающий медиатор. [c.232]

    В ЦНС в небольших количествах содержатся низкомолекулярные нейромедиаторы с простой химической структурой — аминокислоты (первая группа нейромедиаторов). Так, а-аминокислоты (глутаминовая, аспарагиновая) оказывают на нейроны возбуждающее действие у-аминокисло-ты у-аминомасляная кислота — ГАМК) вызывают тормозящий эффект. Такого рода аминокислоты либо поступают в организм с пищей, либо синтезируются в соответствующих нейронах. [c.461]


Смотреть страницы где упоминается термин Глутаминовая кислота как нейромедиатор: [c.229]    [c.146]    [c.102]    [c.294]    [c.189]    [c.227]    [c.59]    [c.230]   
Нейрохимия Основы и принципы (1990) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Глутаминовая кислота



© 2024 chem21.info Реклама на сайте