Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения нескольких элементов

Рисунок 1.7 - Оросительный теплообменник 1 - секции прямых труб, 2 - калачи, 3 - распределительный желоб, 4 - поддон Теплообменники типа труба в трубе (рисунок 1.8) состоят из нескольких последовательно соединенных трубчатых элементов, образованных двумя концентрически расположенными трубами. Эти теплообменники более громоздки, чем кожухотрубчатые, и требуют большего расхода металла на единицу поверхности теплообмена, которая в аппаратах такого типа образуется только внутренними трубами. Двухтрубчатые теплообменники могут эффективно работать при небольших расходах теплоносителей, а также при высоких давлениях /6/. Рисунок 1.7 - <a href="/info/34209">Оросительный теплообменник</a> 1 - секции <a href="/info/1019570">прямых труб</a>, 2 - калачи, 3 - <a href="/info/913791">распределительный желоб</a>, 4 - поддон <a href="/info/34221">Теплообменники типа труба</a> в трубе (рисунок 1.8) состоят из <a href="/info/737661">нескольких последовательно</a> <a href="/info/1267173">соединенных трубчатых</a> элементов, образованных двумя концентрически <a href="/info/1112976">расположенными трубами</a>. Эти теплообменники более громоздки, чем кожухотрубчатые, и требуют большего <a href="/info/28158">расхода металла</a> на <a href="/info/142888">единицу поверхности</a> теплообмена, которая в аппаратах такого <a href="/info/118303">типа образуется</a> только <a href="/info/536376">внутренними трубами</a>. <a href="/info/534330">Двухтрубчатые теплообменники</a> могут <a href="/info/146559">эффективно работать</a> при небольших <a href="/info/535626">расходах теплоносителей</a>, а также при высоких давлениях /6/.

    Если амфотерный элемент имеет в соединениях несколько степеней окисления, то амфотерные свойства наиболее ярко проявляются для промежуточной степени окисления. Например, у хрома известны три степени окисления-( +II), ( + 111) и ( + У1). Для Сг " кислотные и основные свойства выражены в равной степени, тогда как у Сг" наблюдается преобладание основных свойств, а у Сг преобладание кислотных свойств  [c.99]

    Щелочной электролит находится в листе асбеста или подобной пористой основы толщиной 0,76 мм, который обладает высокой всасывающей способностью по сравнению с пористыми электродами. Электроды и прослойка, содержащая-. электролит, зажимаются между оправами для электродов с низким электрическим сопротивлением. Поверхность оправ с каждой стороны элемента подвергается механической обработке так, чтобы обеспечить равномерное распределение топлива и окислителя по поверхности электродов. Эти оправы выполняют четыре функции обеспечивают распределение газа в элементе, служат теплопроводящими средами, являются проводниками электронов от одного элемента к соседнему при последовательном соединении нескольких элементов и служат каркасом установки. [c.442]

    На русском языке до сих пор нет единого общепринятого термина для обозначения системы, состоящей из двух электродов, погруженных в раствор электролита. Если такая система дает электрическую энергию за счет электрохимических процессов, происходящих на электродах, то в технике ее называют химическим источником тока (гальваническим элементом или аккумулятором в зависимости от практической обратимости системы). Соединение нескольких элементов называют в технике батареей. Составные части батареи называют иногда ячейками. В исследовательской работе для обозначения отдельной системы тоже применяют обычно термин элемент, иногда — электрохимический элемент, а когда речь идет о сложной системе, состоящей, например, из четырех последовательно расположенных электродов или содержащей два различных раствора электролитов, то говорят цепь. Этот термин употребляют также и для обозначения источника тока, рассматриваемого совместно с приключенными к нему проводами, измерительными приборами и т. д. Иногда словом цепь обозначают и простой элемент, однако мы считаем такое применение этого термина неправильным и будем его избегать. (Прим. ред.) [c.256]

    Ниже приводим несколько примеров расчета стандартных свободных энергий образования химических соединений из элементов. [c.103]


    При выполнении заземления необходимо помнить, что каждый заземляемый элемент электроустановки должен быть присоединен к заземляющей линии отдельным проводником (рис. 97). Последовательное соединение нескольких элементов (электродвигателей, пусковых аппаратов и др.) не допускается, так как при изъятии [c.176]

    При работе с радиоактивными индикаторами необходимо для каждой поставленной задачи выбрать подходящий радиоактивный изотоп и подходящую ядерную реакцию для его приготовления. Для того чтобы облегчить этот двойной выбор, нами составлена табл. 3, которая содержит, помимо обычных данных по относительному содержанию устойчивых изотопов, периодам полураспада, роду и энергиям излучения частиц, также и приблизительную величину выхода активных частиц для реакций с дейтонами и эффективные сечения для реакций с нейтронами ). При исследованиях, связанных с веществами, представляющими химическое соединение нескольких элементов, выбор изотопов довольно велик, если только нет необходимости отмечать вполне определенный элемент. Для того чтобы таблица не получилась слишком громоздкой, в ней приведены только изотопы с практически пригодными периодами полураспада (10 мин. — 1 год) и только наиболее важные реакции ) для их получения [((1, р) ((1, п) ((1, 2п) (ё, а) и (п, —) (п, т) (п, ) (п, р) (п, 2 п)]. На основе имеющихся в нашем распоряжении данных, величины для выхода радиоактивных веществ приведены лишь для части реакций, правда, практически наиболее важной. Величины для реакций с дейтонами взяты из американских источников ) и отно- [c.33]

    Во многих реальных случаях поглощающее вещество не является элементарным, а представляет собой смесь (например, воздух) или химическое соединение нескольких элементов. В этих случаях при практических расчетах обычно исходят из правила Брэгга, согласно которому тормозная способность молекулы или смеси равна сумме тормозных способностей составляющих атомов . Тогда справедливо равенство [c.102]

    В нем хорошо растворяются вода, фториды, сульфаты и нитраты s-элементов I группы, несколько хуже аналогичные соединения s-элементов II группы. При этом растворенные веш.ества, отнимая от молекул НР протоны, увеличивают концентрацию отрицательных ионов (HFj), т. е. ведут себя как основания. Например  [c.284]

    Теплообменники типа "труба в трубе (рис,6.8,б) изготавливают из нескольких элементов, соединенных между собой последовательно. Каждый элемент состоит из двух труб наружной трубы большого диаметра и концентрически расположенной внутренней трубы. Для возможности очистки внутренние трубы соединяют при помощи съемных колен (калачей). [c.76]

    В данном разделе будет рассмотрено устройство некоторых распространенных электрических батарей. Электрическая батарея представляет собой один или несколько гальванических элементов. При последовательном соединении нескольких гальванических элементов (когда положительный полюс одного элемента присоединяется к отрицательному полюсу следующего элемента) э.д.с. батареи равна сумме э.д.с. отдельных элементов. [c.217]

    Ярко выраженная поливалентность актиноидов отражает специфику электронного строения их атомов — близость энергетических состояний 5/-, 6d-, 7s- и 7р-подуровней, большую пространственную протяженность 5/-орбиталей по сравнению с 4/-и меньшую эф( )ективность экранирования внешних электронов. Только по мере заполнения 5/-орбиталей электронные конфигурации атомов несколько стабилизируются и элементы подсемейства берклия (Вк—Lr) проявляют более устойчивые низкие степени окисления +3 и +2. Для тория, протактиния и урана преобладают степени окисления -f4, -f5 и +6 соответственно, поэтому соединения этих элементов до некоторой степени напоминают соединения гафния, тантала и вольфрама. В настоящее время принадлежность их к семейству /-элементов (актиноидов) не вызывает сомнений. U, Np, Pu и Ат образуют группу уранидов, аналогично подгруппе церия в ряду лантаноидов, а элементы Ст—Lr образуют группу кюридов. [c.360]

    Естественное содержание большинства примесных изотопов со спином /= /2 составляет около или менее 15%, так что при наличии в соединении нескольких ядер данного элемента вероятность нахождения в одной и той же молекуле двух ядер примесного изотопа мала и ею можно пренебречь. Поэтому, например, в спектрах ЯМР С не наблюдается расщепления основных сигналов, обусловленного спин-спиновым взаимодействием ядер С между собой. [c.37]

    В сложных соединениях некоторые элементы проявляют всегда одну и ту же степень окисления, но для большинства элементов она может принимать несколько значений. [c.261]

    Многообразие мира атомов иллюстрируется следующими примерами. Число естественных неорганических соединений — минералов — составляет несколько тысяч и вряд ли существенно изменится. Число искусственно синтезированных неорганических соединений составляет десятки тысяч, органических соединений — несколько миллионов и принципиально не видно предела возможностям химического синтеза. Число металлических сплавов трудно оценить из-за возможности образования многокомпонентных систем на основе — 80 химических элементов, обладающих металлическими свойствами. [c.8]


    Применение уравнения (П.33) для нескольких рядов веществ показано на рис. И.13 и 11.14. Из этих рисунков следует, что в рядах родственных веществ значения данного свойства составляют систему взаимосвязанных величин. При этом из рис. 11.13 вытекает возможность оценить значения 5 98 Для семи неизученных соединений, а из рис. 11.14 видно, что подгруппа калия дает сходную зависимость, причем линии для и Мер лежат несколько в стороне и точка для ЫР (соединения, образованного элементами второго периода) не попадает на линию. По данным этого рисунка также можно оценить значения 5 8 для нескольких неизученных соединений. [c.98]

    Повышенное поглощение и вторичное излучение, связанное с наличием 1 -краев, может иметь место при съемке соединений некоторых лантанидов. В таблице 1 приведены длины волн наиболее употребительных типов излучения и указано, при съемке соединений каких элементов их не рекомендуется использовать. Если образец содержит несколько таких "нежелательных элементов, необходимо вспомнить, что спект ) поглощения сложного вещества является суммой спектров компонентов с коэффициентами, пропорциональными их весовой (или массовой) концентрации. Поэтому, например, рентгенограммы сплавов системы Сг - Л удобно сни- [c.10]

    Все эти методы пригодны для определения какого-либо одного редкоземельного элемента при наличии другого элемента этой группы (иногда нескольких), расположенного достаточно далеко от определяемого в ряду редкоземельных элементов. Это объясняется тем, что используемые различия в свойствах соединений редкоземельных элементов достаточно ощутимы лишь при значительной удаленности по порядковому номеру элемента друг от друга  [c.204]

    Применение металлорганических соединений переходных элементов позволило осуществить специфический синтез нанесенных металлических катализаторов. Изменение концентрации наносимого соединения и температуры восстановления катализатора позволило получить катализаторы предельно возможной степени дисперсности. Эти катализаторы на Ог и А Оз содержат частицы металла размером 30-10 —10 см и ниже. Тем не менее это поверхностные агрегаты металлов, содержащие несколько десятков атомов. [c.114]

    Правило Брэгга—Климена применимо к веществам, представ-ляющим смесь или соединение нескольких элементов. В этом случае за тормозную способность вещества принимают сумму тормоз-] ых способностей всех составляющих атомов. [c.47]

    Элементы с жидким наполнением трудно или вообще невозможно использовать в движении. (Представьте себе устройство для фотовспышки, питаемое от элемента Даниэля ) На рис. 19-6 схематически показано устройство сухого элемента, очень удобного в таких ситуациях, потому что его компонентами являются твердые вещества или влажные пасты, помещенные в плотно закрывающую их оболочку. Роль анода играет цинковая оболочка самого элемента. Вокруг угольного стержня, являющегося катодом, расположена паста, состоящая из МпОг, NH4 I и HjO. На аноде происходит окисление цинка в ионы Zn , а на катоде-восстановление MnOj в Мп(Ш), образующий смесь нескольких соединений. Если элемент используется очень интенсивно, аммиак, выделяющийся при катодной реакции, образует изолирующий слой газа вокруг угольного стержня, что приводит к снижению тока от элемента. При медленном использовании ионы цинка диффундируют от анода по направлению к катоду и соединяются там с аммиаком, образуя комплексные ионы типа Zn(NH3)4 . Вот почему кажущиеся израсходованными батареи для фотовспышки после продолжительного отдыха иногда восстанавливают рабочее состояние. [c.168]

    Рассмотренных типовых технологических связей меж,ау элементами и подсистемами практически достаточно для решения задачи создания сложных ХТС производства любого химического продукта. Существуют ХТС, ст]руктура технологических связей которых представляет собой простую комбинацию рассмотренных типовых связей. Так, возможно последовательнопараллельное и параллельно-последовательное соединение элементов, последовательное соединение нескольких простых замкнутых ХТС, сочетание перекрестной и обратной технологических связей. [c.175]

    Явление изотопии было открыто в 1909 г. при изучении природных радиоактивных элементов. Позднее, в результате разработки метода, дающего возможность определять массы отдельных видов атомов (метод масс-спектрографии), явление изотопии было otкpытo (Астон, 1920 г.) >и у природных соединений нерадиоактивных элементов. С развитием ядерной физики стало доступным искусственное получение новых изотопов для различных элементов. И в настоящее время для каждого элемента известны несколько изотопов, часть которых встречается в природе, другие же, обладая меньшей устойчивостью, могут получаться искусственным путем и испытывают превращение с той или другой скоростью. [c.46]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    По степе1Ш однородности все расходы делятся на элементные (простые) и комплексные. Первые неразложимы на составные части, так как состоят из одного элемента. К ним относятся сырье, заработная плата, амортизация, энергия со стороны и др. Вторые представляют собой соединение нескольких элементных расходов. Например, расходы по текущему ремонту включают материалы, топливо, энергию, заработную плату, расходы по внутризаводской перекачке — энергию, заработную плату, амортизацию, потери нефтепродуктов и др. [c.223]

    Двухтрубчатые теплообменники. Теплообменники этой конструкции, называемые также теплообменниками типа труба в трубе , состоят из нескольких последовательно соединенных трубчатых элементов, образованных двумя концентрически расположенными трубами (рис. VI11-16). Один теплоноситель движется по внутренним трубам 1, а другой — по кольцевому зазору между внутренними 1 и наружными 2 трубами. Внутренние трубы (обычно диаметром 57—108 мм) соединяются калачами 3, а наружные трубы, имеющие диаметр 76—159 мм, — патрубками 4. [c.331]

    Из таблицы вытекает, что наиболее нежелательными являются элементы II группы (Аз, 5Ь и В1), которые распределяются по всем трем продуктам электролиза. Скорости разряда ионов Аз, 5Ь и В на катоде весьма малы, однако они попадают в катодный металл другим путем. Соединения этих элементов склонны к гидролизу, образуя гелеобразные взвеси, например 5Ь(ОН)з, В1(0Н)з,НАз02 ( плавучий шлам). Взвеси катафоретически переносятся к катоду и включаются в катодный осадок. Попадание этих примесей в катод следует исключить, так как даже незначительное количество сурьмы в катодной меди снижает ее пластичность, содержание 0,02% мышьяка уменьшает электропроводность меди на 15%. Лучшим методом борьбы является максимальное удаление этих примесей еще при огневом рафинировании. Включение примесей в катод несколько снижается при повышении кислотности электролита, препятствующей гидролизу солей этих элементов. Свинец и олово практически не растворяются и целиком поступают в шлам в виде РЬ504 и НаЗпОз. [c.308]

    Окрашивание пламени и изучение спектров. При действии высоких температур электроны в атоме возбуждаются и переходят на более высокий энергетический уровень. Дри переходе электронов на ярежний энергетический уровень излучается свет определенной длины волны. Для каждого элемента существует характеристическая длина волны. Под, действием сравнительно низкой тем,пературы газового пламени излучают свет лишь немногие элементы. К ним относятся щелочные, щелочноземельные, а также некоторые тяжелые металлы. Температура возбуждения зависит и от присутствующих анионов. Сульфаты щелочноземельных металлов в пламени практически не излучают света. Для1 испытаний на окрашивание пламени лучше всего. применять <хлориды.. Поскольку следовые количества натрия практически невозможно устранить, окрашивание пламени соединениями натрия часто маскирует окрашивание других элементов. Дерекрывание окрасок наблюдается также. при одновременном присутствии нескольких элементов. В этих случаях лучше применять простейший спектроскоп. [c.38]

    Оптическая плотность согласно уравнению прямо пропорциональна концентрации вещества. Опыт показывает, что зависимость оптической плотности от концентрации часто оказывается не строго линейной. Отклонения от линейности вызываются несколькими причинами, среди которых наиболее существенное значение имеют такие, как нестабильность работы различных узлов спектрофотометра (источника возбуждения и др.), немонохроматичность линий испускания, вызванная сверхтонкой структурой, образование в пламени различных соединений определяемых элементов с кислородом или сопутствующими элементами и т.д. В практике анализа обычно применяют метод градуировочного графика и метод добавок. [c.208]

    Подавляющее большинство соединений i- и р-элементов (в отличие от соединений (/-элементов) бесцветно, так как исключен обусловливающий окраску переход (/-электронов с низких энергетических уровней на более высокие по энергии. Окраска некоторых соединений s- и р-элементов объясняется не э( >фектами кристаллического поля, а другими причинами Такие окрашенные соединения, как PbS-черный, Pbli желтый, SbaSi - оранжевый, содержат сильно поляризуемые ионы, поляризация вызывает расщепление энергетических уровней S- и р-электроно1, что аналогично воздействию кристаллического поля на -электроны. Аналогичное появление близко лежащих энергетических уровней, переходы между которыми соответствуют энергии квантов видимого света, обусловлено делокализацией электронов, образующих связи между несколькими атомами (этим объясняется окраска графита, серы, селена, теллура, N02, Оз и некоторых других соединений р-элементов). Следует отметить, что окрашенные вещества составляют лишь небольи ую долю от общего числа соединений t- и р-элементов. [c.316]

    Кривые титрования по методу окисления — восстановления. Наиболее четко связь между системами титруемого или соответственно титрующего веществ и степенью оттитровывания т проявляется при титровании по методу окисления — восстановления. В этом случае т рассматривают в качестве параметра, являющегося функцией потенциала. Соединения, содержащие элементы, способные существовать в нескольких степенях окисления, перед титрованием следует перевести в одно определенное окислительное состояние. Если предположить, что окислительно-восстановительная система состоит только из окисленной или только из восстановленной формы, то по уравнению Нернста (см. стр. 50) это соответствует бесконечной величине потенциала, что практически неосуществимо. Благодаря способности очень многих веществ к окислению или восстановлению всегда имеется возможность изменения другой окислительно-восстановительной системы (хотя бы, например, за счет окисления или восстановления воды). Несмотря на то что концентрация сопряженных окислителя и восстановителя в этом случае все еще остается исчедающе малой, она все-таки составляет конечную величину. Поэтому значение потенциала в начальной точке кривой окислительно-восстановительного титрования непосредственно по уравнению Нернста определить нельзя. Дальнейшее описание окислительно-восстановительного, равновесия при титровании по реакцииЯ [c.64]

    Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например SO, IO2F3, SBrOjF, r0(02)2, [c.15]

    Если у элементов, расположенных вверху подгруппы, возможны устойчивые соединения нескольких ступеней окисления, то для элементов, расположенных. внизу, наиболее устойчивой формой валентности является максимальная валентйость. [c.431]

    По этому методу органическое вещество подвергают скоростному сожжению в кварцевой трубке без наполнения. Продукты сожжения попадают в раскаленную зону, богатую кислородом, и окисляются до двуокиси углерода и воды. Этот способ, получивший широкое применение в СССР, положен в основу целого ряда методов одновременного определения нескольких элементов из одной навески вещества. Азот в органических соединениях определяют микрометодом Кирсте-на. По этому методу навеску сжигают в кварцевой трубке при 1050° С. Вместо окиси меди и металлической меди используют окись никеля и никель. Метод отличается повышенной точностью и высокой полнотой сгорания органических соединений. В современных аналитических лабораториях стали внедряться и автоматические приборы Циммермана для определения элементного состава, отличающиеся простотой конструкции и большой скоростью анализа. [c.42]

    На практике экстракционное разделение приобретает еще более сложный характер. Это происходит в связи с тем, что экстракционная способность соединений индивидуальных РЗЭ существенно меняется при совместном присутствии нескольких элементов. Подобно электрохимическому ряду напряжения можно расположить РЗЭ в следующий ряд экстракционной способности Ьа, Рг, 5т, У, Но, УЬ, Ьи, Се (IV), где склонность к вытеснению в органическую фазу возрастает в направлении от Ьа к Се (IV). Присутствие 5% РЗЭ иттриевой группы вдвое снижает извлечение в органическую фазу не только элементов цериевой подгруппы, но и У, Но присутствие церия (IV) вдвое снижает извлечение Но и т.д. [П9]. [c.129]

    Из закона действующих масс следует, что Ка= = ( А1гО,)/( А1 о)- В рассматриваемом случае продукт раскисления АЬОз выделяется в виде чистой твердой фазы, поэтому д, д =1. Таким образом, ири постоянной температуре произведение L = a ,a есть постоянная величина. Очевидно, что чем прочнее образующийся окисел, т. е. чем больше убыль свободной энергии при его образовании из элементов, тем сильнее смещено равновесие реакций раскисления в правую сторону и тем меньше численное значение L. Зная величину L, можно рассчитать концентрацию кислорода в стали при равновесии с заданным количеством раскислителя. При обычных в металлургии концентрациях О и А1 можно вместо активностей в выражении L использовать концентрации. В рассматриваемом случае при 1600°С произведение L= [А1]2[0]з 2-Отсюда следует, что, например, при концентрации алюминия, равной 0,01%, содержание кислорода должно быть близким к 0,0004%- Если при раскислении используют одновременно несколько элементов, то получающиеся окислы могут образовать друг с другом раствор или соединение, и их активности будут меньше единицы. [c.103]


Смотреть страницы где упоминается термин Соединения нескольких элементов: [c.30]    [c.561]    [c.561]    [c.530]    [c.109]    [c.30]    [c.138]    [c.308]    [c.147]    [c.88]    [c.374]    [c.418]   
Качественный анализ (1964) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы II соединения



© 2025 chem21.info Реклама на сайте