Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термический крекинг коксообразование и газообразование

    Термическое разложение углеводородов начинается при температуре 380—400 °С. С увеличением темиературы скорость крекинга растет. Глубина разложения углеводородов зависит от темиературы и времени пребывания сырья в зоне высокой температуры. Крекинг может осуществляться в паровом, жидком и двухфазном состоянии. Нежелательные явления ири крекинге — коксообразование (твердый осадок углерода) и газообразование. Снижение коксо- и газообразования достигается повышенной турбулизацией крекируемого потока и повышением давления. [c.217]


    Коксообразование и газообразование при крекинге. В результате сложных реакций полимеризации и конденсации из непредельных и ароматических углеводородов образуется твердый углеродистый остаток — кокс. Образование кокса при термическом крекинге — нежелательное явление, так как оно влияет на продолжительность безостановочного пробега установок. Из-за на копления кокса в змеевиках печей установки термического крекинга приходится часто останавливать на выжиг кокса. [c.183]

    Роль рециркуляции при термическом крекинге. Для дистил-лятного сырья, подвергаемого термокрекингу, при повышении температуры выход бензина растет и достигает максимума. При дальнейшем повышении температуры выход его снижается за счет усиленного Газообразования и коксообразования. Для этого сырья максимальный выход бензина может составить лишь 50% от максимально возможного. Для крекинга тяжелых остатков этот показатель значительно ниже. [c.15]

    Некоторые общие данные по процессу Удри даны в табл. 65—67. Как видно из табл. 67, коксообразование и газообразование при каталитическом процессе без остаточных продуктов более умеренное, чем при термическом крекинге до кокса. [c.154]

    Продуктами промышленных установок термического крекинга являются газ, бензин, крекинг-остаток. Иногда отбирают еще и керосиновую или керосиногазойлевую фракцию. Повышение температуры увеличивает скорость протекающих реакций, глубину процесса, а также приводит к преобладанию реакций расщепления по сравнению с реакциями уплотнения. Глубина процесса оценивается выходом бензина, газа и кокса и их соотношением. Ее выбирают в зависимости от склонности исходного сырья к коксообразованию или газообразованию. С увеличением глубины превращения выход бензина вначале растет, затем достигает некоторого максимума и начинает снижаться. Данное явление связано с тем, что скорость разложения бензина на газ начинает превышать скорость образования бензина. [c.180]

    Глубокий одноступенчатый крекинг мазута на активном синтетическом алюмосиликате, как показали проведенные нами исследования, совершенно ликвидирует фракции в области температур выше 350—400° С и создает значительный максимум в интервале температур ниже 300° С. Однако при осуществлении глубокого каталитического крекинга мазута получаются высокоароматизированные продукты при повышенном газо-и коксообразовании. Следует отметить, что глубина преобразования мазута определяется не только степенью активности катализатора, но и режимными параметрами ведения процесса. Так, например, как известно, при больших скоростях подачи сырья в кипящий слой катализатора можно обеспечить малую степень преобразования сырья даже на синтетическом высокоактивном алюмосиликатном катализаторе. При небольших весовых скоростях подачи сырья в кипящий слой (менее 1,5—2,0) и высоких скоростях циркуляции катализатора (более 8—10 весовых единиц катализатора на одну весовую часть сырья) можно получить в одну ступень значительные выходы автобензина. Однако при этом система перегружается коксом и процесс характеризуется интенсивным газообразованием, а также ароматизацией фракций кипящих до 350° С. Фракции кипящие выше 350° С также сильно ароматизированы и практически не пригодны к дополнительной переработке во второй ступени крекинга. Следует также отметить, что при этом в системе не обеспечивается устойчивое поддержание высокой активности катализатора, падение которой наступает за счет отравления его солями мазута, а также термической дезактивации в регенераторе из-за вспышек частиц, перегруженных коксом. Одно из исследований глубокого каталитического крекинга мазута было осуществлено при работе с рециркуляцией крекинг—газа. В качестве сырья был использован бакинский мазут, характеристика которого уже приводилась выше. Катализатором служил синтетический алюмосиликат с индексом активности 34 режим процесса определялся температурой в реакционной зоне 475° С, весовой скоростью подачи сырья 2 кг- кг час [c.57]



Смотреть страницы где упоминается термин Термический крекинг коксообразование и газообразование: [c.62]   
Технология переработки нефти и газа (1966) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Газообразование

Крекинг термический

Крекинг термический коксообразование



© 2024 chem21.info Реклама на сайте