Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод железохромистых сталях

    Известно [ 59, 60], что в хромистых нержавеющих сталях отсутствие железо-хромистых карбидов достигается, когда концентрация титана в 5—6 раз больше концентрации углерода (для ниобия это соотношение составляет 10 - 12). Примем в расчетах Ti/ = 5,5. При меньших значениях Ti/ углерод соединяется не только с титаном, но с хромом и железом. Для этих случаев количество углерода, связанного в железохромистые карбиды ( pf, %) можно приближенно определить по формуле Ссг = Со - (Tig - Tij )/5,5, где С - суммарное содержание углерода в сплаве Tig - суммарное содержание титана в сплаве, % Ti — количество титана, связанного с азотом, %. [c.99]


    Влияние термической обработки и состояния поверхности на коррозию. Химическая стойкость железохромистых сплавов зависит также от термической обработки и состояния поверхности. Практическое применение как химически стойкие материалы получили стали трех групп, содержащие 13, 17 и 27% Сг и отличающиеся как по структуре, так и по своим свойствам. Стали, содержащие 12—13% Сг, находят широкое применение в турбостроении для изготовления различных деталей, арматуры и других изделий, не подвергающихся действию относительно высокоагрессивных сред. Стали этого типа, содержащие углерод в пределах 0,1—0,4%, применяются преимущественно в термически обработанном, закаленном и отпущенном состояниях. [c.116]

    Хромистые стали. Хром является основным легирующим элементом железоуглеродистых сплавов это объясняется дешевизной и доступностью, а также способностью его к пассивации. Граница устойчивости железохромистых сплавов соответствует содержанию хрома в сплаве от И до 14% (в зависимости от вида агрессивной среды). Стали с таким содержанием хрома называются нержавеющими. Для сталей с содержанием хрома (12— 14%) особое значение имеет углерод, который образует с хромом карбиды, при этом уменьшается содержание углерода в твердом растворе и ухудшаются свойства стали, ее коррозионная и термическая стойкость. Для хромистых сталей, содержащих 17% и выше хрома, влияние углерода несколько меньше, так как, несмотря на связывание части хрома в карбиды, количество его в сплаве остается достаточно высоким (более 12%) °. [c.21]

    Наиболее широкое применение в промышленности получили хромистые стали и чугуны с разным содержанием углерода и хрома. Железохромистые сплавы используются в виде литья, листового и сортового материала. Применяются также хромистые стали с содержанием кремния, так называемые силь-хромы. [c.225]

    На рис. 9 указаны пределы стойкости железохромистых сплавов в окислительных средах в зависимости от содержания углерода и хрома. Чем больше содержание углерода в сплаве, тем больше хрома расходуется на образование карбидов и тем больше обедняется твердый раствор хромом. Нужное содержание хрома в хромистых сталях определяется также агрессивностью среды. [c.24]

    Широкое применение в промышленности имеют хромистые стали и чугунные отливки с разным содержанием углерода и хрома. Железохромистые сплавы используются в виде литья, листового и сортного материала. Из жаростойкой стали изготовляются воздухоподогреватели, газовая арматура, различные детали печной арматуры, цепей печных конвейеров, цементационные ящики, муфели и ванны для термической обработки и т. д. [c.199]


    Переход в пассивное состояние хромистых сталей в большинстве случаев сопровождается изменением электродного потенциала, который становится более положительным. Небольшие количества хрома ие оказывают существенного влияния на коррозионную стойкость железохромистых сплавов. Из диаграммы, приведенной на фиг. 164, видно, что сплав пассивируется при содержании в нем 12—13% хрома. Такое содержание хрома в сплаве соответствует первому порогу устойчивости. В твердом растворе должно быть хрома не менее 11,7% вес., но так как углерод, связываясь с хромом, обедняет твердый раствор хромом, коррозионная стойкость сплава достигается только при условии введения в сплав дополнительного количества хрома, расходуемого на образование карбидов. Минимальное содержание хрома в хромистых сталях, применяемых в химической промышленности, составляет 12—14% при содержании углерода 0,1—0,2%. Очевидно, что чем больше содержание углерода в сплаве, тем больше хрома уходит на образование карбидов и тем больше обедняется твердый раствор хрома. [c.196]

    Напряжения, возникающие на границах зерен при образовании карбидов, способствуют уменьшению коррозионной стойкости границ зерен, но для сталей типа Х18Н9 с содержанием углерода, превышающим предел растворимости хромистых и железохромистых карбидов ё аустените прн температуре отпуска, играют, по-видимому, подчиненную роль. [c.423]

    Отрицательное влияние углерода на склонность к я.к. бьшо установлено при исследовании, конструкционной стали Х13ЮС в области температур до 1000°С [ 54 — 56] и объяснено окислением железохромистых карбидов (Ре, Сг)7Сз. В работе бьшо предложено два пути для исключения я.к. Первый состоит в понижении содержания углерода до значений меньших или весьма близких к его предельной растворимости в хромистом феррите при комнатной температуре. Этот путь трудно осуществим при массовом производстве сплавов. Второй путь состоит в том, чтобы легировать сталь элементами, образующими термодинамически стабильные и труднорастворимые карбиды в количествах, исключающих выделения карбидов хрома с железом. В качестве таких элементов бьши использованы титан и ниобий. Можно рассчитать минимально необходи- [c.95]


Смотреть страницы где упоминается термин Углерод железохромистых сталях: [c.73]    [c.210]    [c.267]    [c.275]    [c.342]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Сталь углерода



© 2024 chem21.info Реклама на сайте