Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сетчатые полимеры предельные прочностные свойств

    Рассмотрим еще один пример влияния топологической организации сетчатого полимера на его прочностные свойства в стеклообразном состоянии [76]. На рис. 36 приведена зависимость а э стеклообразного связующего как функция температуры отверждения. Там же показано изменение плотности полимеров. Видно, что снижение температуры опыта вплоть до 60° С сопровождается улучшением механических характеристик полимера и увеличением плотности. Дальнейшее снижение температуры приводит к ухудшению свойств матрицы. При этом плотность системы также падает. Такое изменение свойств полимера не может быть связано непосредственно с разной глубиной реакции. Даже при 22° С через 5 мес. предельная конверсия достигает значений 70%, при 50° С предельная глубина 87%, что практически совпадает с величиной, полученной при 60° С. Все эти значения (кроме = 22° С) лежат внутри плато Оъэ- Таким образом, разницу в свойствах снова следует искать в топологической структуре полимера. [c.234]


    При повышенных температурах, близких к температуре стеклования, оказывается возможным четко выявить эффект ориентации цепей в ходе вынужденно-эластического деформирования, который проявляется в образовании шейки в деформируемом образце, явно выраженном плато на диаграмме а — 8 и последующем увеличении напряжения при дальнейшем деформировании. При низких температурах этот эффект маскируется интенсивным разрушением большого количества перенапряженных цепей и как следствие преждевременным разрывом полимера, и наблюдается диаграмма типа о — е, приведенного на рис. 28. Незначительное сшивание жестких линейных полимеров, например таких, как полистирол, приводит к некоторому росту предела вынужденной эластичности, однако высокая концентрация узлов сетки вызывает сильное падение прочности при растяжении, и полимер становится очень хрупким. Так, прочность при растяжении сополимера стирола с 4% дивинилбензола повышается до 525 кгс/см по сравнению с 475 кгс1см для чистого полистирола и падает до 70 кгс/сж для сополимера стирола с 25% дивинилбензола [113]. Резкий рост прочностных свойств, равно как и статического модуля упругости и предельной деформации при разрыве, наблюдается при образовании сетчатого полимера в процессе поликонденсации после точки гелеобразования, однако еще задолго до окончания процесса (85—90%) рост этих свойств прекращается [76, 118] [c.229]


Структура и свойства теплостойких полимеров (1981) -- [ c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Сетчатые полимеры



© 2024 chem21.info Реклама на сайте