Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жаростойкость сплавов железа с хромом и кремнием сталей

    Сплав железа с углеродом при содержании последнего более 1,7% называют чугуном. Чугун тверд, но хрупок и не поддается ковке или прокатке. Он используется главным образом для отливок тяжелых машинных частей (станин, маховых колес и т. п.) и на переработку его на сталь. Для улучшения свойств чугуна его легируют, что обеспечивает возможность широкого использования его в промышленности. Легирование чугуна и стали обычно проводят хромом, никелем, марганцем, кремнием, молибденом, вольфрамом, ванадием, титаном, алюминием, ниобием, кобальтом, медью, бором, магнием. От качества и количества легирующих элементов зависят свойства чугуна и стали. Требования к химическому составу выпускаемого промышленностью чугуна определяются условиями его назначения. Так, например, жаростойкий чугун должен соответствовать по химическому составу требованиям ГОСТ 7769—63, отливки из ковкого чугуна ГОСТ 1215—59 (табл. 20, 21). [c.270]


    Химические продукты в той или иной мере всегда вызывают коррозию материала аппарата, поэтому для изготовления их применяются различные металлы (железо, чугун, алюминий) и их сплавы. Наибольшее применение находят стали. Благодаря способности изменять свои свойства в зависимости от состава, возможности термической и механической обработки стали с низким содержанием углерода хорошо штампуются, но плохо обрабатываются резанием. Добавки других металлов — легирующих элементов — улучшают качество сталей и придают им особые свойства (например, хром улучшает механические свойства, износостойкость и коррозионную стойкость никель повышает прочность, пластичность кремний увеличивает жаростойкость). [c.243]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9 % хрома, молибденом или кремнием, применяют, например, в парогенераторе- и турбостроении. Сплав, содержащий 9—12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.235]

    Хромистые стали, содержащие от 6 до 19% Сг и до 4% З , называются сильхромами. Введение кремния в железохроми-сше сплавы способствует значительному повышению жаростойкости сплава, которая обусловлена образованием пленки, состоящей из окислов кремния и хрома. Следует отметить, что высокой жаростойкостью обладают и сплавы железа с кремнием без хрома, но вследствие плохих технологических свойств (крупнозернистое строение и хрупкость) эти сплавы практически непригодны. [c.127]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]


    Коррозионностойкие сплавы на основе железа. К ним относятся хромистые, хромоникелевые, хромомарганцовые, хромоникель-марганцовые стали и стали с др. легирующими элементами (алюминий, молибден, кремний), а также чу-гуны, легированные кремнием, хромом и др. Сплавы железа, содержащие не менее 12% хрома, имеют повышенную коррозионную стойкость, т. к. хром пассивирует их и способствует сохранению высоких механич. свойств при высоких темп-рах. Введение в хромистые стали кремния усиливает их жаростойкость . [c.319]

    Хром применяется в жаростойких сплавах в количестве 2—357о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—147о Сг, а ферритные 14—357о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствующие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома. [c.669]

    Основные методы защиты металлов от окисления при высоких температурах основаны на легировании, т. е. на получении сплавов, более стойких к газовой коррозии, чем обычные, не содержащие специальных легирующих примесей. Кривая рис. 52 показывает, как существенно по-выщается коррозионная устойчивость стали при легировании ее сравнительно небольшими количествами алюминия. На рис. 53 приведены обобщающие данные по влиянию легирования железа кремнием, алюминием, хромом, титаном и никелем на повышение жаростойкости сплава [6]. Очевидно сильное влияние 51, А1 и Сг на повышение жаростойкости стали и малое влияние N1 и Т1 (при исследованных содержаниях этих легирующих примесей). [c.89]

    Диффузионный способ покрытия, основанный на диффузии в поверхностные слои изделия другого металла или сплава при высокой температуре. Образующийся диффузионный слой на поверхности изделия в большинстве случаев обладает свойствами повышенной жаростойкости. Процесс покрытия алюминием называется алитированием, или калоризацией процессы диффузии хрома или кремния в поверхностные слои стали называются соответственно термохромированием, силицирова-нием, и т. п. Кроме того, широко распространен диффузионный способ покрытия железа цинком (шерардизация). [c.170]


Смотреть страницы где упоминается термин Жаростойкость сплавов железа с хромом и кремнием сталей: [c.113]    [c.134]    [c.249]    [c.127]    [c.504]    [c.626]    [c.475]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жаростойкость

Железо сплавы

Кремний жаростойких сплавах

Сплавы кремния

Сплавы хрома

Сталь жаростойкость

Сталь кремния

Хром в сталях

Хрома жаростойкость



© 2025 chem21.info Реклама на сайте