Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь марганцевые

    Кусок броневой плиты из 15% марганцевой стали (о=0,0111 м /ч, Х= 4,88 ккал/ч - м - град) толщиной в 40,6 см извлечен из нагревательного колодца для поверхностной закалки. [c.141]

    Многие легированные стали, т. е. такие стали, которые содержат значительные количества других металлов, помимо железа, имеют ценные свойства и широко используются в промышленности. Марганцевая сталь (12—14% Мп) обладает исключительной твердостью, и из нее делают дробильные и мелющие агрегаты, сейфы и т. д. Никелевые стали имеют множество специальных применений. Хромованадиевая сталь (5—10% Сг, 0,15% V) обладает вязкостью и эластичностью, из нее изготовляют автомобильные оси, рамы и другие детали. Нержавеющие стали обычно содержат хром широко распространена нержавеющая сталь, содержащая 18% хрома и 8% никеля. Из молибденовых и вольфрамовых сталей изготовляют инструменты для скоростной обработки металлов. [c.552]


    Железо и сталь Марганцевая руда Ископаемый уголь [c.1]

    Марганцевые стали (У12) Не применяется — — — [c.117]

    Нелегированную углеродистую сталь можно паять твердым медным припоем в атмосфере сухого водорода при этом достигается высокопрочное и герметичное соединение. Медь, растекаясь, образует валиковый шов, обладающий хорошей пластичностью. К числу других высокотемпературных пластичных припоев относятся никель-марганцевые и золото-никелевые сплавы. [c.28]

    Марганец придает сталям твердость и другие важные качества. Он находит применение и для производства безжелезных сплавов с медью, никелем, алюминием, магнием и другими металлами. Для производства этих сплавов ферросплавы марганца непригодны, поэтому применяется марганец в виде металла той или иной степени чистоты. Производство элементов цинк-марганцевой системы (аноды из активизированной двуокиси марганца), химическая промышленность, стекловарение и сельское хозяйство (микроудобрения) потребляют 5% добываемого марганца. [c.279]

    Около 90 % всего добываемого марганца потребляется для изготовления легированных сталей. Поэтому из руд обычно выплавляют не чистый марганец, а высокопроцентный сплав его с железом и углеродом — ферромарганец (70—90 % Мп). Выплавку его из смеси марганцевых и железных руд производят в электрических печах, причем марганец восстанавливается углеродом по суммарной реакции [c.147]

    Для автоматической и полуавтоматической сварки под флюсом углеродистых сталей наиболее широко используются марганцевые и высококремнистые флюсы в сочетании с низкоуглеродистой проволокой. [c.314]

    Методом комплексонометрического титрования марганец определяют в металлургических шлаках [535], чугунах, сталях [116, 274, 301, 532, 794, 1126], марганцевых рудах, силикатных породах [116, 752, 876, 979], марганец-цинковых ферритовых порошках [741], магний-марганцевых ферритовых порошках [740], сплавах с медью [532]. [c.47]

    Я елезо-марганцевый коллектор применяют при определении фосфора в сталях и сплавах, содержащих Ti, Zr, Nb и до 5% W, и в сплавах на никелевой основе [109]. Такой способ отделения фосфора применим при визуальном колориметрическом окончании анализа при фотоколориметрическом — в случае, когда содержание фосфора в анализируемом материале превышает 0,05%. [c.83]

    Алюминий определяют обычно обратным титрованием с использованием в качестве индикаторов ПАР [684, 708], ПАН-2 [30, 283, 379, 592, 684, 744], комплекса меди с ПАН-2 [615, 616], комплексоната меди с ПАН-2 [458, 459, 523, 609, 852]. Отмечается [684], что оптимальную кислотность титрования (pH 3,7) удобно создавать гидротартратом калия, препятствующим гидролизу алюминия. Алюминий определяют в марганцевых рудах [616], основных шлаках [523], хромовых рудах и огнеупорах [615], металлургических шлаках [283, 379], сталях [852], жаропрочных сплавах [592], магниевых сплавах [458], продуктах титанового производства [459] и котельных накипях [30]. [c.168]


    Снижение механического шума машин достигают использованием для дэталей материалов, обладающих демпфирующими свойствами хромистой стали, марганцево-медных и магниевых сплавов, чугуна и др. С увеличением коэффициента внутреннего трения материала конструкции в два раза уровень Излучаемого ею шума снижается на 3 дБ. [c.31]

    Применяется в промышленности в виде сплавов с другими металлами (манганин, гадфильдова сталь, вольфрамовая сталь, марганцевая медь, марганцевый цияк, марганцевая бронза, марганцевый никель) наиболее важные сплавы — зеркальный чугун и ферроманган. В больших размерах М. употребляется в производстве железа и стали. Добавление малых количеств М. к стали делает ее ломкой, а сплав, содержащий 12% М., очень прочен. М. служит также для восстановления металлов (медь, никель) из их окислов. [c.428]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сплавам железа коррозионную стойкость, вязкость и твердость. Технеций коррозионностоек и устойчив против действия нейтронов, поэтому может применяться как конструкционный материал для атомных реакторов. Рений в основном используется в электротехнической промьшленности и как катализатор. [c.571]

    Металлический Мп используется главным образом для придания твердости и прочности сталям. Для марганца известны состояния окисления от + 2 до +1, наиболее важными из них являются низшее и высшее состояния окисления. В отличие от , V" и Сг" ион Мп" обнаруживает небольшую склонность к переходу в высшие состояния окисления. Он сильно сопротивляется окислению и является плохим восстановителем. Марганец(П) в воде образует розовый октаэдрический комплекс Мп(Н20) , а его соли Мп804 и МпС тоже имеют розовую окраску. Состояния окисления от Мп(1П) до Мп(УГ) встречаются редко, исключение составляет только наиболее распространенная в природе марганцевая руда МпОз. Марганец(У1) существует в виде манганат-иона, МПО4 . Состояние Мп( Т1) является наиболее важным в этом состоянии марганец входит в состав перманганат-иона, МПО4, обладающего пурпурной окраской. Перманганат-ион-один из наиболее сильных среди распространенных окислителей его восстановительный потенциал равен -ь 1.49 В. [c.444]

    В промышленности М. получают электролизом водных растворов MnS04 или восстановлением его оксидов кремнием в электрических печах. М. входит в состав всех чугунов и сталей. Ферромарганец — сплав железа с М. (70—80%) — применяют для раскисления и легирования сталей. М. входит в состав специальных сплавов (манганин, марганцевые бронзы н др.). М. применяется в качестве антикоррозионного покрытия металлов. [c.154]

    Не подпержены карбонильной коррозии хромистые стали с содержаинем 30% Сг, хромоникелевые стали с содержанием 23% Се и 20% N1 и марганцевые бронзы при температуре до 700° С и давлениях до 35 Мн/м . При более низких параметрах пригодны меиее легированные стали, как типа Х18Н9, так и содержащие 13—17% Сг. [c.154]

    Основная масса марганца (около 90%) применяется в металлургии для легирования сталей. Он придает железным сплавам коррозионную стойкость, вязкость н твердость. Важное значение имеет марганцевая сталь (83—87% Ре, 12—15% Мп, I—2% С), которая идет главным образом для изготовления железнодорожных зельсов. Большое значение имеют и другие сплавы зеркальный чугун (15—20% Мп), марганцевая бронза (95% Си и 5% Мп), обладающая высокой механической прочностью. Из сплава ман- [c.391]

    Карбонильной коррозии не подвержены хромистые стали с содержанием 30% Сг, хромоникелевые с содержанием 23% Сг и 20% N1 и марганцевые бронзы при температуре до 700 °С и давлениях до 35 МПа при более низких параметрах пригодны менее легированные стали — типа 10Х18Н10Т. [c.460]

    Известно, что еще на самых низких ступенях культуры люди уже НОСИЛИ окращенные одежды. Как это ни поразительно, но уже очень давно научились закреплять на текстильных материалах индиго, сумах, экстракты красильного дерева и крапнлаки. В античные времена из пурпурных улиток добывали ценный пурпур (см. стр. 699), а из кошенили — алый краситель, который до сих пор еще применяется для губной помады. Лишь в начале XIX столетия стали использовать неорганические пигменты — берлинскую лазурь, марганцевый пигмент и т. д. [c.599]

    В отличие от других металлов, рассматриваемых в настоящей главе, 90—95% Добываел ого марганца применяется в черной металлургии для раскисления, обессеривания и легирования стали. Марганец легко взаимодействует с кислородом и серой и удаляется со шлаком, освобождая сталь и чугун от этих элементов. Для такой цели применяется иногда марганцевая руда, но чаще —ферросплавы марганца, выплавляемые из руд в электротермических или в доменных печах с углеродом в качестве восстановителя. [c.279]


    Плазма используется для варки стали. В Центральном научно-исследовательском институте черной металлургии им. И. П. Бардина и в ряде исследовательских центров ГДР были созданы первые в мире плазменные сталеплавильные печи, выдающие высококачественный металл. Плазменная плавка, по мнению специалистов, — это ближайшее будущее качественной электрометаллургии. ВНИИ электротермического оборудования (Москва) совместно с СКВ Саратовского завода электротермического оборудования разработали метод ионно-плазмеиной обработки поверхиости инструментов, износостойкость которых увеличивается в 4 раза. Плазменно-механическая обработка. марганцевых сталей по сравнению с их обычной закалкой повышает ироизводительност ) труда в 5—10 раз, а титановых сплавов - - н 15 раз. [c.236]

    Этот раствор подают в катодное пространство диафрагменных электролизеров, где марганец осаждается на матрицах из нержавеющей стали или титана. Раствор фильтруется через диафрагмы в анодное пространство электролизеров, где на анодах (РЬ+17оАд) выделяется кислород и образуется диоксид марганца, осыпающийся на дно ванны, откуда он периодически выводится. Анолит, обогащенный серной кислотой и обедненный марганцем, выводят из ванн и направляют на растворение марганца из марганцевого концентрата (МпО). Выводимый анолит имеет следующий состав (кг/м ) 35—40Мп504, 130— 150 (МН4)2504, 50 Н2804. [c.269]

    В настоящее время в связи с истощением запасов высококачественных лиролюзитовых руд появилась потребность в заменителе. Таким заменителем стал искусственны диоксид марганца, который получают из рядовых марганцевых руд. Подавляющее большинство искусственного диоксида марганца получают электрохимическим методом (ЭДМ), химический диоксид марганца (ХДМ) осаждается при ззаимодействии раствора соли двухвалентного марганца с сильными окислителями — перхлоратом, перманганатом. [c.204]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд углем в электрической печи. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сдлавам железа коррозионную стойкость, вязкость и твердость. Рений в основном используется в электротехнической промышленности и как катализатор. [c.621]

    В исследованиях, проведенных автором, в качестве основного элемента принят хром, так как марганцевые и особенно высокомарганцевые стали исследованы более основательно. В качестве дополнительных элементов использованы титан, цирконий и бор (совместно с цирконием). [c.102]

    Фосфатированию подвергают главным образом сталь. Различают 1есколько вариантов процесса чаще всего применяют цинковое фосфатирование и железное или натрийаммонийное фосфатирование, уществует также марганцевое фосфатирование. [c.83]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей он способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при ргстяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий — важная добавка в инструментальной (до 2%) и конструкционной (до 0,2%) сталях, сталях для газопроводов высокого давления. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцевой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Им легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Он — компонент сплавов для постоянных магнитов. Вводят в сталь его в виде феррованадия— сплава железа с 35— 80% V. [c.17]

    Потенциометрическое определение марганца основано на реакции окисления Мп(П) до Мп(1П) перманганатом калия в нейтральном пирофосфатном растворе [93—97, 147, 353, 422, 1181, 1410, 1414], бихроматом калия в 11,5—13,5 М Н3РО4 [1367—1369] или в присутствии фторидов [5, 144, 215, 216, 1272]. Этот метод применяют для определения как малых ( 0,1%), так и больших содержаний (до 90—95%) марганца. Вместо каломельного электрода, имею-ш,его ряд недостатков, часто применяют биметаллическую систему электродов Pt—W [353]. Определению марганца в нейтральном пирофосфатном растворе не мешают Fe(III), r(III), o(II), Ni(II), Mo(VI), W(VI), Al(III), Mg(II), Zn(II), u(II), d(II), a также небольшие количества (до < 0,03%) V (V). При больших содержаниях V(V) отделяют сначала MnOj [96, 584] или титруют при 60° С [776]. Влияние r(VI) устраняют восстановлением его до Сг(1П) введением NaNOj. Метод потенциометрического титрования марганца в этих условиях применяют при анализе цветных сплавов [95, 422, 584], ферромарганца и марганцевых руд [93, 94, 533, 1410], доломита, шлака [97], почв [643], сталей [94, 584], горных пород [584]. [c.48]

    Пирофосфатомарганцевая кислота образуется при окислении Мп(П) броматом калия на холоду в присутствии пирофосфорной кислоты [680, 1019, 1158]. Максимум светопоглощения раствора наблюдается при 520 нм (е = 800). Фотометрическому определению марганца мешают ионы С1 , Вг , J , Hg(H), Fe(II), Sn(II), а также Н2О2 и комплексов III. Этим методом определено содержание марганца в горных породах [1019], марганцево-магниевых ферритах [635], стали, ферромарганце [1158]. [c.58]

    Исследованы оптимальные условия нейтроно-активационного определения марганца в агломерате марганцевой руды при помощи нейтронного генератора, работающего по ядерной реакции Т(й, п) и снабженного графитовым замедлителем нейтронов. При продолжительности облучения 10 мин., потоке 10 нейтрон сек, объеме пробы 100—1000 см можно определить 25—50% Мп со статистической ошибкой 0,5% [83]. Показана возможность определения марганца с помощью нейтронного генератора под действием нейтронов с энергией 14 Мэе [518, 1302, 1314, 1432]. Сечение реакции Мп (и, а) У равно 0,030 + 0,012 барн. Чувствительность при 20 мин. облучении составляет 5 мкг Мп [518]. Определено содержание марганца в стали [1314] путем облучения в нейтронном генераторе 12 з образца в течение 20 сек. потоком 10 нейтрон см сек. Способ применим при анализе магния и титана. [c.102]

    Бандажные кольца (крыпжи ротора, крышки индукторов, рис. 22.1) являются наиболее нагруженными деталями турбогенераторов. Они предназначаются для того, чтобы восприн53ть центробежные силы от концов обмоток, выступающих из продольных канавок ротора. Они изготовляются преимущественно из высокопрочных холоднодеформированных немагнитных марганцевых аустенитных сталей. При их эксплуатации могут возникнуть, в частности, усталостные разрунгения в местах приго-рания под действием блуждающих токов, но чаще наблюдается коррозионное растрескивание под напряжением прп наличии влаги. Такие трещины могут быть выявлены вручную наклонными искателями под углом 35—45 на частоте 2 МГц. При наличии иногда встречающихся крупнозернистых зон нужно перейти на частоту 1 МГц. Более показательным, чем ручной контроль, является периодически повторяющийся контроль с применением специальных манипуляторов (см, раздел 22.3). [c.421]


Смотреть страницы где упоминается термин Сталь марганцевые: [c.139]    [c.402]    [c.248]    [c.59]    [c.111]    [c.114]    [c.51]    [c.68]    [c.312]    [c.41]    [c.768]    [c.463]    [c.339]    [c.164]    [c.463]    [c.66]   
Справочник Химия изд.2 (2000) -- [ c.420 ]




ПОИСК







© 2025 chem21.info Реклама на сайте