Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нулевой закон термодинамики. Термодинамическое равновесие

    Нулевое начало термодинамики в такой формулировке эквивалентно закону термодинамической транзитивности если термодинамическая система А находится по отдельности в равновесии с термодинамическими системами В и С, то системы В и С также находятся в термодинамическом равновесии друг с другом. Из закона транзитивности как следствие вытекает факт существования температуры, являющейся единой характеристикой этого равновесного состояния. [c.310]


    На нулевом (общем) законе термодинамики основано измерение температуры с помощью термометра. В учение о теплоте температура вводится через понятия теплового или термодинамического равновесия. Эти понятия трудно поддаются логическому определению. К ним приходят в результате рассмотрения конкретных примеров и последующего обобщения. [c.21]

    Физическая сущность температуры как характеристики термического равновесия и введение ее в термодинамику очень хорошо изложены в работе М. А. Леонтовича [14]. Введение термодинамической температуры постулируется как нулевой закон термодинамики, впервые высказанный Р. Ф. Фаулером [19]. В основе этого ч остулата лежит слабое взаимодействие системы с окружающей средой. Фаулер отыскивал аналитическую связь термодинамиче-О кой температуры со статистическими. Следовательно, в равновес- ой системе существуют термодинамическая и статистические тем-" ературы компонентов газа. Первая характеризует внешние епловые свойства системы, а статистические температуры характеризуют внутренние свойства и являются внутренними параметрами системы. При термодинамическом равновесии связь термодинамической температуры и статистических довольно проста  [c.17]

    Интерпретация параметра в требует большей осторожности из-за того, что он тесно связан с определением локальной температуры. Последняя величина имеет недвусмысленное истолкование лишь для состояния равновесия, когда она определяется вторым законом термодинамики. Как мы видели в гл. 2, для разреженных газов можно дать простое обобщение этого определения. Однако в плотных газах возможны различные определения температуры (см. работу Эрнста [69]). Грин, Гарсиа-Колин и Чэос [78] вьщвинули требование, согласно которому решение обобщенного уравнения Больцмана в нулевом порядке по р должно соответствовать локальному термодинамическому равновесию следовательно, локальная температура должна быть связана с другими характеристиками с помощью соотношений равновесной термодинамики. Поскольку одно- и двухчастичные функции распределения, фигурирующие в формуле (13.2.13), — равновесные функции, уравнение (13.2.16) является не чем иным, как уравнением равновесной термодинамики, выражающим плотность энергии через плотность числа частиц и температуру. Следовательно, в случае равновесия параметр О соответствует величине А Г, и мы можем интерпретировать отношение б к как температуру неравновесного газа. [c.382]


    Третий закон термодинамики был подтвержден многочисленными исследованиями, причем вещества, энтропия которых при абсолютном нуле не равнялась нулю, обладали вполне объяснимыми отклонениями от совершенного кристаллического состояния. Как и следовало ожидать, газы, жидкости, метастабильные стеклообразные фазы, вещества с замороженной разупорядоченностью и растворы не подчиняются третьему закону нулевой энтропией обладают вещества, находящиеся во внутреннем термодинамическом равновесии при О К. Для веществ, которые при О К не образуют упорядоченных кристаллических твердых фаз, 5о =/=0. [c.49]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]


Смотреть главы в:

Физическая и коллоидная химия -> Нулевой закон термодинамики. Термодинамическое равновесие




ПОИСК





Смотрите так же термины и статьи:

Закон термодинамики

Закон термодинамического равновесия

Законы термодинамики нулевой

Равновесие термодинамическое

Равновесие фаз, закон



© 2025 chem21.info Реклама на сайте