Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция влияние температуры

Рис. У1П-16. Влияние температуры на физическую адсорбцию и хемосорбцию (активированную адсорбцию) Рис. У1П-16. <a href="/info/153400">Влияние температуры</a> на <a href="/info/3229">физическую адсорбцию</a> и хемосорбцию (активированную адсорбцию)

    Влияние температуры. Адсорбция — процесс экзотермический и, следовательно, течению его должно способствовать понижение температуры. Повышение ее способствует десорбции, вследствие чего количество адсорбированного вещества уменьшается. [c.111]

    Для каждой температуры существует свое состояние равновесия. Чем выше концентрация адсорбата, тем больше адсорбция, а чем выше температура, тем меньше физическая адсорбция. Влияние температуры на физическую адсорбцию отвечает принципу Ле Шателье, поскольку десорбция как процесс, обратный адсорбции, сопровождается поглощением теплоты. [c.269]

Рис. XIX, 14. Влияние температуры на адсорбцию из бинарных растворов а —адсорбция бензола из растворов с н-гексаном (полная аэаим ная растворимость) б — адсорбция нафталина из растворов с к-гептаном (кристаллизация нафталина). Рис. XIX, 14. <a href="/info/153400">Влияние температуры</a> на адсорбцию из <a href="/info/12377">бинарных растворов</a> а —<a href="/info/306990">адсорбция бензола</a> из растворов с н-гексаном (полная аэаим ная растворимость) б — адсорбция нафталина из растворов с к-гептаном (кристаллизация нафталина).
    На рис. 2.3 показан наиболее типичный для пористых мембран вид изотерм и изобар во всем диапазоне изменения относительного давления. При малых значениях Р/Ру (обычно менее 0,05) идет процесс мономолекулярной адсорбции по уравнению Лэнгмюра, далее до Р/Ру 0,35 зона полимолекулярной адсорбции по уравнению БЭТ и наконец процесс капиллярной конденсации. Изобара адсорбции иллюстрирует влияние температуры. [c.53]

    Физическая адсорбция протекает самопроизвольно. Адсорбтив стремится занять всю поверхность адсорбента, но этому препятствует процесс, противоположный адсорбции — десорбция, вызванная, как и диффузия, стремлением к равномерному распределению вещества вследствие теплового движения. Для каждой концентрации адсорбтива в окружающей среде существует состояние адсорбционного равновесия, аналогичное равновесию между конденсацией и испарением. Понятно, что чем выше концентрация адсорбтива, тем больше адсорбция. Также ясно, что чем выше температура, тем меньше физическая адсорбция. Для каждой температуры также существует свое состояние равновесия. Влияние температуры на физическую адсорбцию вполне согласуется с принципом Ле Шателье — Брауна, поскольку десорбция как процесс, обратный адсорбции, сопровождается поглощением тепла. [c.82]

    На рис. 10 показано влияние температуры на адсорбцию системы а-метилнафталин — декалин на силикагеле в области почти всех возможных концентраций [20]. Для сравнения иа этом же графике приведены данные для системы толуол — и-гептан при 25°, изображенные пунктирной линией. Влияние температуры на коэффициент разделения непрерывно уменьшается вплоть до самых высоких исследованных концентраций. [c.146]


    Физическая адсорбция протекает достаточно легко, поэтому равновесное состояние устанавливается быстро даже при низких температурах. Хемосорбция связана с энергией активации (табл. 53), и скорость процесса незначительна, но возрастает с повышением температуры равновесное состояние также устанавливается медленно. Влияние температуры на количество адсорбированного вещества показано на рис. УП-1 для типичного случая адсорбции водорода на смешанном катализаторе . [c.205]

    Влияние температуры детально рассматривается в [300]. При нагревании, как правило, снижается межфазная энергия за счет увеличения взаимной растворимости фаз, уменьшается вязкость жидкостей, возрастают коэффициенты объемной и поверхностной диффузии все это способствует снижению прочности твердых тел. К этому надо добавить, что очень яркие эффекты, состоящие в резком падении прочности, наблюдаются при нагревании минералов, содержащих связанную воду (серпентинита и др.), выше точки дегидратации, когда вода освобождается и приобретает подвижность [253]. Вместе с тем повышение температуры может и ослаблять влияние активной среды. Нагревание уменьшает адсорбцию и, следовательно, смесь активного вещества с неактивным при повышении температуры может действовать хуже. Увеличение коэффициентов диффузии может привести к тому, что жидкая фаза будет быстрее рассасываться в твердом теле, проникая в него через стенки трещины, что вызовет прекращение ее роста. [c.98]

    С целью выяснения природы каталитической активности цеолита HY в реакции окисления бензилового спирта исследовано влияние на активность катализатора различных факторов степени обмена ионов Na на Н в исходном NaY, адсорбции пиридина и воды, предварительной термообработки водородом [259]. Показано, что каталитическая активность цеолита HY, под которой подразумевается суммарный выход бензальдегида и бензойной кислоты, уменьшается на 60% при обработке цеолита водородом при 500° С в течение 15 ч. Это явление аналогично дезактивирующему влиянию высокотемпературной водородной обработки цеолита в реакциях гидрирования, о чем говорилось выше. При обмене 40-60% ионов Na в цеолите происходит заметное увеличение выхода продуктов окисления, а также бензилового эфира и толуола. Пиридин вызывает снижение каталитической активности цеолита HY, а введение в реакционную систему воды увеличивает выход бензилового эфира и снижает выход продуктов окисления. Изучено влияние температуры прокаливания цеолита HY на его каталитические свойства. Оказалось, что предварительное прокаливание при 450°С приводит к повышенной активности катализатора в образовании бензилового эфира, а выход бензальдегида увеличивается с повьпцением температуры прокаливания в интервале 500-550°С. Эти результаты указывают, по-видимому, на то, что реакция дегидратации бензилового спирта осуществляется на бренстедовских кислотных центрах, а его окисление происходит с участием льюисовских центров. [c.107]

    Технико-экономические показатели процесса закачки ПАВ, капитальные вложения и эксплуатационные расходы непосредственно зависят от степени использования химического реагента во всем объеме пласта и в течение всего процесса вытеснения. Степень использования ПАВ, в свою очередь, зависит от интенсивности адсорбции ПАВ на поверхности пористой среды. Исследования БашНИПИнефть показали, что при нагнетании 0,05 %-ного водного раствора ОП-10 в водонасыщенные пористые среды адсорбция в зависимости от удельной поверхности пород изменяется в пределах 0,009—1,25 мг/г. При использовании растворов ПАВ в реальных нефтенасыщенных породах адсорбция меньше. Влияние температуры на адсорбцию ПАВ в пласте до 80 С несущественно. [c.85]

    В настоящее время при расчете адсорбционного равновесия наиболее часто применяются два метода расчета влияния температуры на плотность адсорбированной фазы, использующие физические константы адсорбируемого вещества. Согласно первому методу, предложенному К. М. Николаевым и М. М. Дубининым, плотность адсорбата полагается равной плотности нормальной жидкости при температурах, меньших температуры кипения Т С. То, а при Го 7" Гкр термический коэффициент адсорбции ао = й п ао/й1 постоянен и расчет плотности адсорбированной фазы основан на использовании уравнения Ван-дер-Ваальса  [c.30]

    Интересно влияние температуры на скорость адсорбции. С повышением температуры скорость адсорбции возрастает, так как нагревание всегда способствует ускорению установления равновесия в системе. С другой стороны, при повышении температуры адсорбция, отвечающая равновесному состоянию, падает. Таким образом, кинетические кривые адсорбции при разных температурах должны пересекать друг друга, как это и показано на рис. IV, 14. [c.108]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]


    Влияние температуры на устойчивость дисперсных систем сложнее. Во-первых, повышение температуры системы усиливает броуновское движение, что способствует повышению седиментационной устойчивости системы но, во-вторых, оно ослабляет адсорбцию потенциалопределяющих ионов, что ведет к снижению -потенциала, что благоприятствует коагуляции. [c.281]

    Константа р уравнения (IV, 2) обычно колеблется в широких пределах. Физический смысл ее становится ясным, если принять с = 1, тогда р представит собой величину адсорбции при равновесной концентрации адсорбтива, равной 1 моль/л. Показатель 1/л, имеющийся в обоих уравнениях, является правильной дробью и характеризует степень приближения изотермы к прямой. Из сказанного об изменении формы изотермы под влиянием температуры легко видеть, что с повышением температуры коэффициенты Лир должны уменьшаться, а 1/п — увеличиваться. [c.85]

    Влияние температуры. Степень разделения компонентов, а следовательно, и коэффициент селективности Кс возрастают с увеличением разности теплот адсорбции или растворения и разности энтропий адсорбции или растворения при постоянной температуре колонки. С увеличением температуры степень разделения уменьшается тем больше, чем выше теплота растворения или адсорбции. В том случае, когда теплоты близки или равны, разделение определяется лишь различием энтропий и не зависит от температуры. Этот случай наиболее благоприятен для хроматографии, так как, во-первых, близость теплот означает близость температур кипения, а значит, и возможность разделения близкокипящих соединений, а, во-вторых, это означает независимость степени разделения т от температуры и возможность ускорения процесса путем повышения температуры без ухудшения разделения. Возможные [c.129]

    ИЗУЧЕНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ НА АДСОРБЦИЮ ВОДОРОДА НА ПЛАТИНИРОВАННОМ ПЛАТИНОВОМ ЭЛЕКТРОДЕ [c.195]

    Межмолекулярное взаимодействие компонентов раствора с адсорбентом и друг с другом на поверхности и в объеме раствора. Взаимное вытеснение молекул с поверхности адсорбента. Гиббсовская адсорбция, химический потенциал, коэффициент активности и константа Генри для адсорбции компонентов раствора. Изотермы гиббсовской адсорбции из бинарных и трехкомпонентных растворов. Адсорбция из растворов ограниченно растворимых компонентов, капиллярное расслаивание в порах адсорбентов. Влияние температуры. Определение константы Генри и изотермы адсорбции методом жидкостной хроматографии. [c.248]

    Адсорбция из растворов ограниченно растворимых жидких компонентов, капиллярное расслаивание в порах адсорбентов, влияние температуры [c.261]

Рис. 14.12. Влияние температуры на адсорбцию из бинарных растворов нафталина в к-гептане на силикагеле вертикальные линии — кристаллизация нафталина при насыщении объемного раствора Рис. 14.12. <a href="/info/153400">Влияние температуры</a> на адсорбцию из <a href="/info/12377">бинарных растворов</a> нафталина в к-гептане на силикагеле вертикальные линии — <a href="/info/1115260">кристаллизация нафталина</a> при насыщении объемного раствора
    Физическая адсорбция протекает самопроизвольно. Адсорбтив стремится целиком занять всю поверхность адсорбента, но этому препятствует процесс противоположный адсорбции — десорбция, вызванный как и диффузия, стремлением к равномерному распределению вещества вследствие теплового движения. Для каждой концентрации адсорб-тива в окружающей среде существует состояние адсорбционного равновесия, аналогичного равновесию между конденсацией и испарением. Понятно, что чем выше концентрация адсорбтива, тем больше адсорбция. Для каждой температуры существует свое состояние равновесия. Влияние температуры на адсорбцию вполне согласуется с принципами ле Шателье — Брауна, поскольку десорбция, как процесс, обратный адсорбции, сопровождается поглощением тепла. Чтобы определить количество адсорбированного вещества, необходимо экспериментально найти, чему равно давление газа или концентрацию адсорбтива в сосуде, в котором происходит адсорбция, до адсорбции и после нее. Адсорбцию очень часто определяют также по привесу адсорбента. [c.36]

    Влияние температуры сказывается при адсорбции из растворов в том же направлении, как и в газах. При этом с повышением температуры ве личина адсорбции падает меньше, чем в случае адсорбции газов. [c.289]

    Опыт 2. Влияние температуры на адсорбцию [c.72]

    Влияние температуры на адсорбцию [c.86]

Рис. 14. Влияние температуры на динамическую адсорбцию изопентана из природного газа па силикагеле. Цифры на линиях — полнота адсорбции изопентана, %. Рис. 14. <a href="/info/153400">Влияние температуры</a> на <a href="/info/677806">динамическую адсорбцию</a> изопентана из <a href="/info/7334">природного газа</a> па силикагеле. Цифры на линиях — полнота адсорбции изопентана, %.
    На рис. 14 и 15 показано влияние температуры и давления на адсорбцию изопентана силикагелем в условиях промышленного адсорбционного [c.44]

    С целью выяснения природы активных центров MgO, aO, 8Ю и ВаО в гидрировании этилена, пропилена и бутена-1 изучено [310] влияние температуры прокаливания этих катализаторов и их отравления аммиаком, пиридином, нитробензолом и диоксидом углерода. Найдено, что указанные оксиды становятся активными в реакции гидрирования после предварительного прокаливания их при температурах выше 600 °С. При этом максимальную активность ВаО, MgO и SrO проявляют в результате прокаливания при 1100°С, а СаО - при 800 °С. По своей максимальной активности в реакции гидрирования изученные катализаторы располагаются в ряд MgO < aO < ВаО < 5Ю. А скорости гидрирования различных олефинов на MgO и СаО возрастают следующим образом бутен-1 < < пропилен < этилен. Результаты опытов по отравлению указывали на то, что гидрирование олефинов и реакции изомеризации, этерификации полимеризации или дейтерообмена протекают на разных центрах поверхности. Так, адсорбция аммиака, пиридина, нитробензола и Oj полностью подавляет реакцию гидрирования бутена-1, в то время как в изомеризации этого углеводорода активность катализатора после адсорбции, например, ЫНз снижается лишь наполовину. [c.118]

    Максимальные значения критерия разделения соответствуют обгарам 11-23 %. Для этих образцов наблюдается оптимальное соотношение селективности и кинетики адсорбции. Влияние температуры ошлта в значительной степени сказывается на сорбщш СО2 и Хе из смеси с воздухом для образцов с обгарами 5-6 %, для которых определяющим фактором следует считать селективность. Это подтверждается данными по разделению смеси оксид углерода + метан. По сравнению с промышленным углем АГ-2, полученные адсорбенты характеризуются лучшими разделительными свойствами. [c.589]

    Влияние температуры на адсорбционное равновесие. Процесс адсорбции всегда сопровождается выделением тепла. Поэтому следовало ожидать, что повышение температуры должно уменьшать велр1чину избирательной адсорбции. Эта закономерность действительно наблюдается на опыте. [c.146]

    В статье приведены данные о влиянии температуры паровой обработки цеолитов МдЛ и СаА на их динамическую адсорбционную способность по н-додекану. Показано, что наибольшее дезактивирующее действие водяные пары оказывают на цеолиты в интервалах Н0-250°С и выше 400°С. Отмечено, что под действием водяных паров происходит сникение скорости адсорбции н-додекана исследованными цеолитами, в то время как их равновесная адсорбционная способность изменяется в значительно меньшей степени. На основе дериватографических исследований десорбции аммиака из цеолитовМдА и СаА предлокен механизм дезактивации цеолитов водяными парами. Идл.З, библ.8. [c.146]

    В табл. 4 показано влияние температуры газа, применяемого для регенерации, на остаточное пасыш ение и адсорбционную емкость силикагеля, применяемого в качестве адсорбента на промышленных установках. Равновесные адсорбционные емкости выражены здесь через весовое количество водяного пара, адсорбируемого при различной относительной влажности газового потока. Адсорбция водяного пара при низкой относительной влажности является весьма надежным критерием оценки способности адсорбента поглощать наиболее трудно извлекаемые компоненты, как пропан и бутан, [c.45]

    Для развития теории влияния ПАОВ на стадию разряда — ионизации электрохимических реакций большое значение имеют данные, полученные при различных температурах, поскольку из них можно рассчитать соответствующие изменения теплоты, свободной энергии и энтропии активации, вызванные адсорбцией ПАОВ. Для корректной трактовки кинетических данных необходимы параллельные исследования по влиянию температуры на адсорбцию ПАОВ. Наиболее полные данные по влиянию температуры на адсорбцию ПАОВ и ингибирование ими реакций восстановления катионов С<12+, РЬ +, 2п +, Еи + на ртутном и амальгамных электродах были получены Ф. И. Даниловым и С. А. Па-насенко. Ими показано, что энтальпия адсорбции АЯа не зависит от степени заполнения поверхности ПАОВ, тогда как свободная энергия адсорбции АОд линейно изменяется с ростом 0. Следовательно, рост абсолютной величины АСа происходит за счет увеличения энтропии адсорбции Д5а- [c.170]

    Электровосстановление малеиновой кислоты представляет интерес в связи со своеобразным влиянием на него температуры. Скорость электровосстановления малеиновой кислоты при увеличении температуры от 20 до 50° С возрастает. Однако при дальнейшем повышении температуры она падает и при 80° С становится даже ниже, чем при комнатной температуре. Такое изменение скорости процесса с температурой объясняется ее влиянием на адсорбцию как водорода, так и малеиновой кислоты на электроде. С повышением температуры при данном Ег адсорбция водорода уменьшается, что должно приводить к уменьшению скорости процесса. Помимо этого повышение температуры ускоряет процесс деструкции адсорбированных молекул малеиновой кислоты, что сопровождается образованием на поверхности негидрируемых частиц, блокирующих часть поверхности и также снижающих скорость процесса электровосстановления. В принципе такое влияние температуры может наблюдаться и в других случаях электрокаталитических процессов. [c.281]

    Зависимость адсорбции на ионных адсорбентах от электрических моментов молекул. Кристаллические непористые и тонкопористые ионные адсорбенты, катионированные цеолиты. Влияние на адсорбцию цеолитами полярности молекул, радиуса и заряда катионов, степени ионного обмена, декатионирования и деалюминирова-ния. Межмолекулярные взаимодействия адсорбат — адсорбат в полостях цеолита и влияние температуры на состояние адсорбированного вещества. Особенности адсорбции воды. Применение цеолитов в хроматографии. [c.28]

Рис. 14.11. Влияние температуры на адсорбцию растворов на щирокопористом угле Рис. 14.11. <a href="/info/153400">Влияние температуры</a> на <a href="/info/5960">адсорбцию растворов</a> на щирокопористом угле
    Влияние температуры регенерации на равновесную емкость силикагеля при адсорбции водяных паров после нескольких месяцев работы на установке адсорбционного отбензипивания природного газа [c.45]


Смотреть страницы где упоминается термин Адсорбция влияние температуры: [c.147]    [c.541]    [c.220]    [c.117]    [c.127]    [c.44]   
Физическая и коллоидная химия (1988) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционный параметр взаимодействия fW. 14.10.2. Примеры Теплоты адсорбции и влияние температуры на поверхностное натяжение

Адсорбция влияние на температуру стеклования

Адсорбция влияние температуры и растворимости

Адсорбция из растворов ограниченно растворимых жидких компонентов, капиллярное расслаивание в порах адсорбентов, влияние температуры

Влияние на адсорбцию из растворов температуры и растворимости

Влияние температуры на адсорбцию из растворов

Влияние температуры на процессы адсорбции Адсорбция из раствора

Время адсорбции. Влияние температуры на адсорбцию

Изучение влияния температуры на адсорбцию водорода на платинированном платиновом электроде

Пирожков, Б. Б. Дамаскин. Строение двойного слоя на I ртутном электроде при адсорбции жирных кислот. II. Влияние строения моле- I кулы и температуры

Температура, влияние на адсорбци

Температура, влияние на адсорбци



© 2025 chem21.info Реклама на сайте