Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коды митохондрий

Рис. 18. Код митохондрий. Такой код имеют митохондрии человека. У митохондрий дрожжей кодоны, начинающиеся с ЦУ, кодируют треонин, а кодон АУА отвечает Иле. Стрелками указаны те места, в которых код митохондрий человека отличается от универсального кода, приведенного на рнс. 6. Рис. 18. Код митохондрий. Такой код имеют <a href="/info/1324443">митохондрии человека</a>. У <a href="/info/590956">митохондрий дрожжей</a> кодоны, начинающиеся с ЦУ, кодируют треонин, а кодон АУА отвечает Иле. Стрелками указаны те места, в которых код <a href="/info/1324443">митохондрий человека</a> отличается от <a href="/info/952126">универсального кода</a>, приведенного на рнс. 6.

    Но есть и другая точка зрения. Согласно ей, коды митохондрий не более древние, а наоборот, более молодые, чем основной код, и возникли, когда ббльшая часть митохондриальных генов уже перешла в ядро. В митохондриальной ДНК осталось так мало генов, что изменение кода перестало быть обязательно смертельным событием для митохондрии и клетки в целом. После того, как такое изменение произошло из-за мутации в аппарате синтеза белка, в структурных генах произошли мутации, компенсирующие эти изменения кода. После этого процесс перехода генов из митохондрий в ядро прекратился, так как аппарат синтеза белка митохондрий не мог уже быть подменен аппаратом клетки. Эта гипотеза привлекательна тем, что объясняет, почему передача генов из митохондрий в ядро остановилась на полдороге. [c.75]

    Обнаружилось все это, по-видимому, случайно. Б. Бе-релл и его сотрудники из Лаборатории молекулярной биологии в Кембридже (Англия) занимались расшифровкой последовательности митохондриальной ДНК человека. Кстати, это тот самый Берелл, который обнаружил впервые, что гены могут налезать друг на друга. Сравнили последовательность гена, кодирующего одну из субъединиц цитохромоксидазы, с белковой последовательностью, правда, не человеческой, а бычьей цитохромоксидазы. Последнее обстоятельство не помешало совершенно точно определить код митохондрий человека. Он изображен на рис. 18. [c.73]

    Почему возникли изменения в коде митохондрий Поскольку значения митохондриальных кодонов проще (по сравнению с общим кодом), это, возможно, говорит об их более примитивной организации. Примером тому служит использование UGA наряду с UGG для кодирования триптофана. Однако возможно и обратное толкование, т.е. что это упрощение было развито в результате особенностей белкового синтеза в митохондриях (см. гл. 7). Существование видоспецифических изменений говорит о большей гибкости механизмов белкового синтеза в митохондриях по сравнению с целым организмом. Система митохондриального белкового синтеза производит не много белков (всего около 10) поэтому проблемы значительных нарушений из-за перекодировки не так остры. Вероятно, измененные кодоны не часто использовались в тех местах, где аминокислотные замены приводили к серьезным повреждениям. [c.62]

    В ходе эволюции у прокариотических и эукариотических организмов сформировались системы биосинтеза белка, которые по структурной организации существенно отличаются друг от друга. С учетом этого обстоятельства, а также того, что сам процесс узнавания кодонов может подвергаться определенным генетически обусловленным модификациям, можно только удивляться тому, что как прокариоты, так и эукариоты используют совершенно идентичный генетический код, представленный в табл. 12.1. Универсальность генетического кода-наиболее серьезное подтверждение эволюционных представлений, согласно которым все организмы произошли от одного общего предка. Именно поэтому весьма неожиданным оказалось, что генетический код митохондрий, как было впервые установлено в 1979 г., характеризуется отличными от обычных значениями некоторых кодонов и некоторыми особыми правилами узнавания кодонов. [c.95]


Таблица 12.9. Генетический код митохондрий человека Таблица 12.9. Генетический код митохондрий человека
    При исследовании генетического кода в опытах in vivo также были получены доказательства универсальности кода, однако в последние годы выявлены некоторые особенности его в митохондриях животных, включая клетки человека. Генетический код цитоплазмы отличается от такового митохондрий 4 кодонами. Два кодона АУГ, который обычно является инициаторным кодоном, кодирует также метионин в цепи, и УГА, являющийся нонсенс-кодоном, кодирует в митохондриях триптофан. Кодоны АГА и АГГ являются для митохондрий скорее терминирующими, а не кодирующими аргинин. В результате для считывания генетического кода митохондрий требуется меньше разных тРНК, в то время как цитоплазматическая система трансляции обладает полным набором тРНК. [c.522]

    Видно, что этот код в целом похож на код, уже известный ранее. Но четыре кодона изменили свой смысл. Кодон УГА отвечает триптофану, а АУА — метионину, а кодоны АГА и АГГ стали терминируюш,ими. Но на этом чудеса не кончились. Когда сравнили последовательности ДНК и белков у дрожжевых митохондрий, то оказалось, что у них код и не такой, как обычно, и не такой, как у митохондрий человека. К тем изменениям, которые имеются у кода митохондрий человека, добавилось еще такое все четыре лейцн-новых кодона, начинающихся с ЦУ, перешли к треонину. Треонину стало отвечать восемь кодонов У лейцина осталось только два УУА и УУГ. Правда, кодон АУА вернулся к Иле, как в универсальном коде. [c.73]

    Почти полная идентичность генетического кода у всех организмов служит убедительным доводом в пользу того, что все клетки произошли от общего предшественника. Как же в этом случае объяснить некоторые отличия генетического кода митохондрий Приблизиться к пониманию этого помогли недавно полученные данные о различии генетического кода в митохондриях разных организмов. Папример, триплет UGA, служащий в универсальном коде стоп-кодоном, в митохондриях млекопитающих, грибов и простейших кодирует триптофан, но в митохондриях растений используется как стоп-кодон. Аналогичным образом триплет AGG, обычно кодирующий аргинин, в митохондриях млекопитающих обозначает сигнал "stop", а у дрозофилы кодирует серин (табл. 7-4). Подобные отклонения указывают на то, что в генетическом коде митохондрий могут происходить случайные перемены. Вероятно, возможность появления и закрепления в потомстве случайных изменений в значении кодона связана с необычайно малым числом белков, кодируемых митохондриальным геномом в большом геноме подобные изменения привели бы к нарушению функции многих белков и, как следствие, к гибели клетки. [c.491]

    Возможно, генетические системы этих органелл представляют собой эволюционный тупик. В рамках эндосимбиотической гипотезы это означает, что процесс переноса генов эндосимбионта в ядерный геном хозяина прекратился раньше, чем был завершен может быть, в случае митохондрий эта остановка была результатом сравнительно недавних изменений в генетическом коде митохондрий. Такие изменения, вероятно, сделали бы оставшиеся митохондриальные гены функционально неактивными в случае их переноса в ядро. [c.501]


Библиография для Коды митохондрий: [c.489]   
Смотреть страницы где упоминается термин Коды митохондрий: [c.72]    [c.95]    [c.225]    [c.501]   
Смотреть главы в:

Самая главная молекула -> Коды митохондрий




ПОИСК





Смотрите так же термины и статьи:

коду



© 2025 chem21.info Реклама на сайте