Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые при расшифровке генетического кода

    Некоторые из наиболее важных открытий последних лет в биологий связаны с расшифровкой генетического кода (гл. I, разд. А, 3) и выяс- нением путей, ведущих к синтезу нуклеиновых кислот и белков. Строев ние нуклеотидов и аминокислот (гл. 14), так же как химические основы процессов полимеризации (гл. 11), разд. Д), мы рассмотрели раньше В этой главе пойдет речь о механизмах, контролирующих реакции полимеризации и обеспечивающих организацию нуклеотидов и аминокислот в правильные последовательности. Изучение этих механизмов связано с развитием генетики и биохимии, что и отражено в названии данной главы [1, 5]. [c.182]


    Расшифровка генетического кода была начата М. Ниренбергом, который получил искусственно синтезированную нуклеиновую кислоту [c.57]

    Основные научные работы посвящены биохимии нуклеиновых кислот, ферментативным превращениям углеводов и жиров, механизму фотосинтеза. Используя фермент полинуклеотидфосфорилазу, выделенную из бактерий, синтезировал (1955) РНК (в отличие от природной она не обладала стереоспецифичностью и в ее молекулу входили не четыре типа нуклеотидов, а лишь один). Участвовал в работах по расшифровке генетического кода. [c.378]

    Вопросы разработки методов синтеза олиго- и полинуклеотидов в последнее время привлекают большое внимание исследователей. Это связано с тем, что синтетические олигонуклеотиды стали использоваться для идентификации фрагментов природных нуклеиновых кислот, изучения их химических свойств, а также как инструмент исследования в молекулярной биологии и молекулярной генетике (для расшифровки генетического кода, функционирования генома, процессов взаимодействий нуклеиновых кислот с белками, в том числе ферментами нуклеинового обмена, антибиотиками и т. д.). [c.280]

    В 50-е годы раскрыт один из наиболее сложных процессов — синтез холестерина, который является не только компонентом клеточных мембран и липоидов плазмы крови, но и предшественником в синтезе биологически активных стероидов, в том числе гормонов-анаболиков. За это открытие американский ученый К. Блок, немецкий ученый Ф. Линнен и английский ученый Дж. Корнфорд в 1961 г. были удостоены Нобелевской премии. В 1953 г. Дж. Уотсоном и Ф. Криком была определена структура нуклеиновых кислот, что положило начало расшифровке генетического кода. Эти авторы также были удостоены Нобелевской премии, ф. Сенджером расшифрована первичная структура гормона инсулина, что дало возможность синтезировать его и использовать в медицинской практике. В 1957 г. американский ученый Е.В. Сазерленд открыл универсальный передатчик действия гормонов и медиаторов на внутриклеточные процессы — [c.13]

    Область применения электронно-микроскопических исследований чрезвычайно широка. В комплексе с другими методами, применяемыми в биологических исследованиях, электронная микроскопия участвует в решении таких актуальных теоретических проблем, как механизм биосинтеза белков, и нуклеиновых кислот в клетке, механизм наследственности (расшифровка генетического кода, изучение первичной и вторичной структуры ДНК и РНК), эволюция и систематика микроорганизмов, их принцип организации и развития, функциональная морфология клетки. Кроме решения теоретических проблем, электронная микроскопия находит самое широкое применение в практике. Благодаря электронному микроскопу совершенствуется морфологическая диагностика заболеваний человека и животных, определяется топография и характер места локализации антигенов, изучается действие лекарственных и дезинфицирующих веществ на клетку и микроорганизмы, а также используется для решения ряда других важных практических задач. [c.211]


    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Одним из важнейших моментов в изучении нуклеиновых кислот явилось установление пространственной структуры ДНК, осуществленное лауреатами Нобелевской премии Уотсоном и Криком. Дальнейшим значительным открытием был ферментативный синтез ДНК и РНК, который стал возможен благодаря работам Корнберга и Очоа. Эти работы явились предпосылкой для расшифровки генетического кода в синтезе белка, начало которой было положено блестящими исследованиями Ниренберга и Маттеи. [c.325]

    Поскольку одна и та же наследственная информация записана в нуклеиновых кислотах четырьмя знаками (азотистыми основаниями), а в белках — двадцатью знаками (аминокислотами), проблема генетического кода сводится к установлению соответствия между ними. Работа по расшифровке генетического кода потребовала приложения усилий ученых различных специальностей тенетиков, физиков, химиков, математиков. Особенно большую роль в решении этой проблемы сыграли исследования физика Г. Гамова и генетика Ф. Крика — одного из авторов модели строения молекулы ДНК. [c.151]

    Значительную роль в решении данного вопроса сыграл наш бывший соотечественник физик Г.А.Гамов, который проанализировал все известные к тому времени аминокислотные последовательности белков и в 1957 г. пришел к выводу, что код должен быть триплетным. Немало ученых разных стран (среди которых были внесшие наибольший вклад англичанин Ф.Крик, а также американец индийского происхождения Х.Г.Корана) занялись впоследствии расшифровкой генетического кода. С помогцью многочисленных экспериментов удалось подтвердить, что код действительно триплетен и установить какие тройки нуклеотидов что кодируют. В 1968 г. Х.Г.Коране вместе с егце двумя учеными была присуждена Нобелевская премия по физиологии и медицине за расшифровку генетического кода и выяснение его роли в синтезе белков . В поздравительной речи представитель Каролинского института П.Рейхард сравнил нуклеиновые кислоты и белки с языками, а их составные элементы - с буквами алфавита. Он отметил Химическая структура нуклеиновых кислот определяет химическую структуру белка, а алфавит нуклеиновых кислот - алфавит белков. Г енетический код - это словарь, благодаря которому возможен переход с одного алфавита на другой . С позиций сегодняшнего дня можно считать, что это скорее специальная обеспечиваюгцая транслитерацию программа-переводчик, тем более что в настоягцее время под генетическим словарем начинают понимать нечто иное, чего в ходе дальнейшего изложения нам егце предстоит коснуться. [c.10]

    Самое замечательное достижение в изучении нуклеиновых кислот — расшифровка генетического (наследственного) кода , при помощи которого в их молекулах записывается наследственная информация. Оказалось, что каждой из 20 а-аминокислот (с. 328), которая может быть включена в синтез белка, соответствует определенный код , или шифр , заключающийся в последовательности трех нуклеотидов (а всего их в ДНК или РНК встречается, как уже было указано, четыре). Например, отрезок полинуклеотидной цепи РНК, приведенный на с. 476, включает остатки нуклеозидов в последовательности аденозин—цитидин—гуанозин, т. е. содержит трехбуквенный (или тринуклеотидный) код АЦГ, определяющий включение в синтез белка аланина этой аминокислоте соответствуют еще два других кода цитидин—цитидин—гуанозин (ЦЦГ) и уридин—цитидин —гуанозин (УЦГ). Некоторым аминокислотам отвечает только один код, некоторым — два или четыре кода. [c.477]

    Благодаря знанию генетического кода мы имеем возможность определять участки нуклеотидных последовательностей, кодирующих потенциальные белки. Этот источник и сегодня, спустя 10 лет после расшифровки первого целого генома (бактериофаг ФХ174), дает нам основную информацию о функциональном строении нуклеотидной последовательности. В то же время, несмотря на то, что известны сотни последовательностей различных функциональных сигналов нуклеиновых кислот, наши представления о принципах их организаций весьма ограничены. Это обусловлено трудностями экспериментального исследования регуляторных участков и сложностью их строения. [c.4]



Смотреть страницы где упоминается термин Нуклеиновые при расшифровке генетического кода: [c.372]    [c.420]    [c.54]    [c.195]    [c.297]   
Биохимия Том 3 (1980) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Расшифровка кода

коду



© 2025 chem21.info Реклама на сайте