Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетический код считывание

Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в результате мутации со сдвигом рамки . Бактериофаг Т4 способен образовывать лизоцим. Этот фермент кодируется геном фага. Вверху представлен отрезок нормальной нуклеотидной последовательности (фаг дикого типа) и указаны соответствующие аминокислоты, Внизу приведена нуклеотидная последовательность двойного мутанта, полученного из дикого типа в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с этого места триплеты считываются неправильно ( рамка считывания сдвинута). В результате включения О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. Таким образом, нуклеотидные последовательности двойного мутанта и дикого типа различны только на участке от второго до пятого триплета включительно. Если кодируемые этими триплетами аминокислоты не существенны для функции данного белка, то вторая мутация восстанавливает свойства (фенотип) дикого типа (генетическая супрессия). Рис. 15.4. Изменение разбивки считываемой последовательности на триплеты в <a href="/info/1355385">результате мутации</a> со <a href="/info/101523">сдвигом рамки</a> . Бактериофаг Т4 способен образовывать лизоцим. Этот <a href="/info/1394523">фермент кодируется геном</a> фага. Вверху представлен отрезок нормальной <a href="/info/98217">нуклеотидной последовательности</a> (фаг <a href="/info/700379">дикого типа</a>) и указаны <a href="/info/166527">соответствующие аминокислоты</a>, Внизу приведена <a href="/info/1388569">нуклеотидная последовательность двойного</a> мутанта, полученного из <a href="/info/700379">дикого типа</a> в результате двукратной обработки профлавином. Нуклеотид А во втором триплете утрачен, и начиная с <a href="/info/436023">этого места</a> <a href="/info/1868698">триплеты считываются</a> неправильно ( <a href="/info/510489">рамка считывания</a> сдвинута). В <a href="/info/1320773">результате включения</a> О в конце пятого неверного триплета в дальнейшем восстанавливается правильный порядок считывания. <a href="/info/461013">Таким образом</a>, <a href="/info/1388569">нуклеотидные последовательности двойного</a> мутанта и <a href="/info/700379">дикого типа</a> различны только на участке от второго до пятого триплета включительно. Если кодируемые этими <a href="/info/1409270">триплетами аминокислоты</a> не существенны для <a href="/info/1705635">функции данного</a> белка, то вторая <a href="/info/106064">мутация восстанавливает</a> свойства (фенотип) <a href="/info/700379">дикого типа</a> (генетическая супрессия).

    Транскрипция является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе. механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и прн репликации. Транскрипция осуществляется ферментами РНК-полимеразами, синтезирующими РНК на ДНК-мат-рице из рибонуклеозидтрифосфатов. [c.133]

Фиг. 94. Гипотетическая последовательность оснований в ДНК, показывающая, что генетическая информация записана триплетами. При выпадении одного основания (вторая строка) считывание кода нарушается. Считывание кода может быть восстановлено, если где-то поблизости от выпавшего основания включится новое основание (третья строка). Информацию можно прочесть и в том случае, если включится целых три основания (нижняя строка). Фиг. 94. <a href="/info/958940">Гипотетическая последовательность</a> оснований в ДНК, показывающая, что <a href="/info/32967">генетическая информация</a> записана триплетами. При выпадении одного основания (вторая строка) считывание кода нарушается. Считывание кода может быть восстановлено, если где-то поблизости от выпавшего основания включится <a href="/info/650115">новое основание</a> (третья строка). Информацию можно прочесть и в том случае, если включится целых три основания (нижняя строка).
    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]


    Стрептомицин и другие аминогликозидные антибиотики (неоми-цин, канамицин, мономицин, гентамицин, гигромицин В) нарушают считывание генетического кода на уровне 308-субъединиц рибосом. При этом антибиотики взаимодействуют с рибосомами и подавляют связывание некоторых т-РНК. При действии стрептомицина неправильно считывается только пиримидиновое основание. Стрептомицин может быть причиной возникновения устойчивых и даже зависимых от антибиотика штаммов, образующихся из чувствительных клеток дикого типа путем мутации. У зависимых особей мутация аллельналокусу резистентности к стрептомицину или очень тесно сцеплена с ним. [c.108]

    Если мутация обусловлена вставкой или делецией одной нуклеотидной пары в ге е, то при этом могут происходить более глубокие генетические повреждения, чем в случае замены основания. Следствием подобной мутации будет нарушение нормального соответствия между кодонами в ДНК и аминокислотами в кодируемом полипептиде. Нарушения начнутся с той точки, в которой появилась или исчезла пара оснований, поскольку именно в этом месте возникает сдвиг рамки считывания ДНК. В результате полипептидный продукт будет иметь правильную аминокислотную последовательность вплоть до точки мутации, а далее аминокислотная последовательность будет совершенно искажена (рис. 30-8). Мутации со сдвигом рамки часто приводят к появлению внутреннего терминирующего кодона, вызывающего преждевременное прекращение синтеза полипептида и образование укороченного продукта. Подавляющее большинство точковых мута ций со сдвигом рамки приводит к образованию биологически [c.971]

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]

    Реагируя с 30S рибосомной субъединицей, аминогликозиды нарушают правильность считывания генетического кода на стадии -информационная РНК - белок они нарушают правильность распознавания кодонов информационной РНК антикодонами транспортной РНК. [c.229]

    Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза, мутации выраи ают-ся в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.207]

    Природа гена-оператора скрывает в себе еще много неясного. Известны мутанты по этому гену. Предполагается, что ген-оператор включает и выключает считывание генетической информации. Пока еще не пришли к единому мнению относительно того, действительно ли ген-оператор — это самостоятельный ген, стоящий перед геном Si, или же это всего лишь начальный участок гена Sj. Одно можно сказать наверняка перевод гена-оператора в, положение включено или выключено определяется извне, а не самим геном. [c.274]

    Мутация со сдвигом фазы — мутация, возникающая в результате появления в генетическом тексте лишнего азотистого основания. Считывание информации при такой мутации происходит со сдвигом на одно основание. Если на каком-то расстоянии от лишнего основания произойдет деление другого основания, то первоначальный генетический текст восстанавливается, однако участок между вставкой и делецией продолжает считываться со сдвигом. [c.61]


    Вирусы настолько просты, что обходятся без собственного аппарата считывания наследственной информации и использования ее для синтеза белков. Они существуют лишь потому, что паразитируют на организмах, обладающих клеточным строением (бактериях и эукариотах) и аппаратом матричного копирования генетической информации и синтеза белков, который вирусы и используют для собственного воспроизведения. В результате их многогранной деятельности люди болеют гриппом, корью, свинкой, полиомиелитом (детским спинным параличом), бешенством, СПИДом, оспой и т. д. Животные и растения, в том числе домашние, тоже страдают (и нередко погибают) от вирусных заболеваний. [c.90]

    Такой удивительный способ самовоспроизведения обусловлен универсальностью генетического кода — единой системой кодирования (и считывания) наследственной информации, свойственной всем известным живым организмам. Если бы код вируса отличался от кода хозяина, тот не мог бы синтезировать нужные ему макромолекулы. [c.90]

    Но, как обнаружил в 1961 г. Крик, многие ревертанты образуемые гП-мутантами второго типа (т. е. мутантами с небольшими делециями и вставками), не являются истинными ревертантами, а представляют собой двойные мутанты, которые приобрели способность расти на штамме К за счет сосуществования в области гН двух мутаций—исходной и ее супрессора. Крик и Сидней Бреннер чрезвычайно изящно использовали этот факт для экспериментальной проверки гипотезы триплетного генетического кода, которая к тому времени существовала уже восемь лет. Они показали, что правильное считывание длинной последовательности ну- [c.328]

    Направление считывания мРНК — считывание генетического текста в процессе биосинтеза полипептидной цепи белка, начиная с 5 -конца полинуклеотидной цепи и кончая З -концом. Например, если в качестве матричной РНК в бесклеточной белоксинтезирующей системе используется гексануклеотид, А—А—А—У—У—У, то ос-новнмм продуктом реакции является дипептид Лиз—Фе. А когда в качестве мРНК используются полинуклеотиды со структурой А—А—А......А—А—Ц, то среди продуктов обнаруживаются олигопептиды со структурой Лиз—Лиз—Лиз.....Лиз—Асп [c.61]

    Крик и Бреннер предположили, что подобный эффект мутации сдвига фазы считывания может быть подавлен в результате второй мутации противоположного знака, возникшей вблизи первой мутации, т. к. в этом случае должна восстановиться правильная фаза считывания генетической информации. Однако последовательность нуклеотидов, заключенная меж-уд первой и второй мутациями, будет по-прежнему транслироваться со сдвигом фазы и, следовательно, приводить к формированию аминокислотной последовательности, отличающейся от последовательности в соответствующем фрагменте белка дикого типа. [c.445]

    Считывание генетического кода при помощи какого бы то ни было механизма должно начинаться с определенной точки для того, чтобы информация была правильной. Так, например, последовательность СААСААСААСАА кодирует четыре аминокислотных остатка лейцина, если считывание начинается с крайнего левого С (цитидина). Если же оно начинается со следующего нуклеотида (т. е. А), это будет код для трех остатков валина. Наконец, если начинать с третьего слева нуклеотида (тоже А), мы получим последовательность трех цистеиновых остатков. [c.485]

    МУТАЦИЯ, наследуемое изменение генотипа. Различают точечные М. и крупные перестройки ДНК. К точечным относятся замены одиночных пар оснований ДНК (транзи-ции — замены одного пурина на другой и одного пиримидина на другой, трансверсии — замены пурина на пиримидин и наоборот) и выпадения или вставки одиночных нуклеотидных пар ДНК (мутации со сдвигом рамки считывания). Замена пары оснований может приводить к изменению кодона и послед, замене аминокислоты в кодируемом белке (миссенс-мутация) или же к образованию бессмысленного кодона и прекращению трансляции данной матричной РНК (нонсенс-мутация). К крупным перестройкам ДНК относятся делении (выпадения), дупликации (удвоения), инверсии (повороты на 180°), транслокации (перемещения) участков ДНК, а также инсерции (встраивания) новых сегментов ДНК. Иногда к М. относят изменения числа хромосом в клетке (геномная М.). Различают спонтанные М., возникающие с частотой 10 —10 (отношение числа мутировавших нуклеотидных звеньев к общему числу мономерных звеньев ДНК), и индуцированные, частота к-рых может пре-вьипат . 10 М. могут быть индуцированы хим. (дезаминирующие, алкилирующие и др. реагенты), физ. (ионизирующие излучения) и биол. мигрирующие генетические элементы) мутагенными факторами. Частота и специфичность возникновения спонтанных и индуцированных М. находятся под генетич. контролем. [c.356]

    При исследовании генетического кода в опытах in vivo также были получены доказательства универсальности кода, однако в последние годы выявлены некоторые особенности его в митохондриях животных, включая клетки человека. Генетический код цитоплазмы отличается от такового митохондрий 4 кодонами. Два кодона АУГ, который обычно является инициаторным кодоном, кодирует также метионин в цепи, и УГА, являющийся нонсенс-кодоном, кодирует в митохондриях триптофан. Кодоны АГА и АГГ являются для митохондрий скорее терминирующими, а не кодирующими аргинин. В результате для считывания генетического кода митохондрий требуется меньше разных тРНК, в то время как цитоплазматическая система трансляции обладает полным набором тРНК. [c.522]

    Образовавшиеся комплексы АК—т-РНК затем диффундируют к рибосома.м , которые ориентируют их относительно одноцепочной и-РНК таки.м образом, чтобы обеспечить точное считывание генетического кода, т. е. строго определенную последовательность остатков аминокислот. В дальнейшем расщепляется богатая энергией связь АК—т-РНК с возникновением энергетически бедной пептидной связи  [c.338]

    Вообще говоря, в реакциях наследственной тактической со оли-меризации могут участвовать мономерные единицы двадцати видов, кодовая запись которых осуществляется путем составления сочетаний по три (из четырех возможных) значения упомянутых выше четырехзначных переменных таким образом, чтобы вырождение 5ыло возможно. Генетический код представлен ниже обозначения фенилаланин , лейцин и т. д относятся к соответствующим мономерным единицам, участвующим в сополимеризации, или, говоря более конкретно, представляют собой названия различных аминокислот (структура небольшого фрагмента полипептидной цепочки была показана ранее в разделе 11.14). В схеме против сочетания AUG записано метионин и в скобках инициатор . Это означает, что если даже тРНК и несет какую-либо информацию, последняя остается бесполезной до тех нор, пока в цени не встретится последовательность типа AUG, и лишь после этого может начаться считывание информации. Другими словами, последовательности AUG являются тем кодом, который инициирует полимеризацию метионина  [c.142]

    Расположение азотистых оснований в ДНК служит кодом, определяющим последовательность аминокислот в различных белках. Строительство белков осуществляется с помощью третьей макромолекулы, в которой отпечатывается (считывается) информация, закодированная в ДНК. Эта молекула называется информационной или матричной рибонуклеиновой кислотой (мРНК). В точке репликации двойная цепь расплетается и начинается считывание кода с образованием РНК. Для построения РНК используются те же азотистые основания, что и для ДНК, т.е. аденин (А), цитозин (С) и гуанин (О), но тимин (Т) заменен урацилом (и). Это несущий информацию мостик между геном ДНК и нужным белком. Каждая аминокислота кодируется тремя нуклеотидами. Например, последовательность ССО означает аминокислоту пролин, а САУ в генетическом словаре соответствует гистидину. [c.116]

    Совершенно другой подход использовали Г. Стрейзингер, А. Цугита и их сотрудники. Их опыты также подтвердили предположение, что трансляция мРИК происходит со стороны 5 -конца в направлении З -конца полинуклеотидной цепи. В этой работе было исследовано влияние мутаций сдвига фазы считывания в гене лизоцима бактериофага Т4 на первичную структуру белка лизоцима. Как следует из работы Крика и Бреннера по изучению общей природы генетического кода (гл. XIII), мутации сдвига фазы считывания возникают в результате включения или выпадения одного нуклеотида в ДНК и, следовательно, приводят к тому, что, начиная с мутировавшего сайта, вся информация считывается неправильно. [c.445]

    Биологическая роль тРНК состоит в следующем 1) она узнает, специфические аминоацил-тРНК-синтетазы, от которых акцептирует соответствующую активированную аминокислоту 2) принимает участие в реализации генетического кода путем считывания мРНК, в результате чего обеспечивается правильное встраивание аминокислоты в синтезирующуюся полипептидную цепь белка 3) после каждого образова-- НИЯ пептидной связи удерживает синтезирующуюся полипептидную цепь на рибосоме - [c.84]

    Что же такое ГПГ Напомним, что вся информация об организме — от бактерии до человека — хранится (точнее, кодируется) в его ДНК. Знаменитая двойная спираль молекулы ДНК состоит всего из 4 оснований А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Две нити ДНК связаны углеводородными мостиками , соединяющими между собой (по принципу ключ — замок ) соответствующие друг другу по химическому строению концы оснований (А — Т и Г — Ц). Допустим, нить ДНК представлена последовательностью ТТТАТТГТТГЦТ. Разобьем ее на слова из трех букв ТТТ АТТ ГТТ ГЦТ — это и есть генетический код, в котором каждое слово (триплет, или кодон) кодирует определенную аминокислоту. Так, выбранная последовательность кодирует короткий пептид (небольшой белок) из четырех аминокислот фенилаланина, изолейцина, валина и аланина. Когда говорят об экспрессии генов (реализации в клетке закодированной в ДНК информации), подразумевают, что кодоны считываются специальными ферментами клетки с образованием промежуточной информационной молекулы и-РНК (этап транскрипции), считывание триплетов которой (этап трансляции) происходит в рибосомах с образованием белков. [c.81]

    На фоне расшифровки последовательностей нуклеотидов в геноме стало очевидным, что функционирует он как сложная система с множеством обратных связей, а не как простое считывание информации с цепочки бусинок-генов . И регуляторная иерархия весьма динамична, она может меняться при делении соматических и зародышевых клеток. Некоторые дополнительные механизмы, о которых ученые давно догадывались, приводят к наследственным стабильным изменениям экспрессии генов без изменения нуклеотидной последовательности в ДНК (их назвали эпигенетическими). Накопленные генетиками факты о межгенных взаимодействиях и их роли в происхождении болезней, в понимании корреляций между генотипом и фенотипом, позволяют совершенно по-новому оценить генетическую регуляцию функций. И этим будет занята генетика человека в будуш ем. [c.144]

    В своих формальных генетических опытах с мутациями сдвига фазы считывания у бактериофага Т4, проведенных в 1961 г. (см. гл. XIII), Крик и Бреннер показали, что каждая из 20 основных аминокислот представлена в генетическом коде триплетом нуклеотидов. Однако гораздо более трудной задачей было расшифровать генетический код, т. е. выяснить, какой аминокислоте соответствует каждый из 64 возможных триплетов, перечисленных на фиг. 216. Для удобства триплеты обозначаются тремя заглавными буквами левая буква соответствует 5 -концу, а правая — З -концу триплета. Например, символ УАГ на фиг. 216 обозначает триплет нуклеотидов фУфАфГ. [c.433]

    Нуклеотидная последовательность дикого типа является единственно возможной последовательно стью, которую можно построить, выбирая определенные синонимы из таблицы генетического код , если учитывать известную аминокислотную последовательность, возникающую в результате двух противоположных по знаку мутаций сдвига считывания. Более того, видно, что эти мутации могут представлять собой только выпaдevшe А из первого положения серинового кодона АГУ дикого типа и вставку Г между кодонами метионина АУГ и аланина ГЦ- на расстоянии 15 нуклеотидов [c.446]


Смотреть страницы где упоминается термин Генетический код считывание: [c.306]    [c.220]    [c.306]    [c.535]    [c.419]    [c.437]    [c.734]    [c.561]    [c.947]    [c.282]    [c.491]    [c.501]    [c.239]    [c.320]    [c.329]    [c.330]    [c.446]    [c.211]   
Основы биологической химии (1970) -- [ c.526 , c.529 ]




ПОИСК







© 2025 chem21.info Реклама на сайте