Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Учет радиоактивных изотопов

    Астат-211. Альфа-излучатель At (Т[/2 = 7,2 ч ЭЗ 58,3%, а 41,7% основные 7-кванты с = 92,4 кэВ (2,3%) 687,0 кэВ (0,25%) Еа = = 5,866 МэВ), изотоп пятого, самого тяжёлого элемента в группе галогенов, относится к числу немногих нейтронодефицитных изотопов, применяемых в радиотерапии. У астата нет стабильных изотопов, а радиоактивные изотопы имеют короткие периоды полураспада (самый большой Т1/2 = 8,3 ч у At). Поэтому исследование химических свойств этого элемента происходит на уровне ультрамикроколичеств, что требует исключительной аккуратности в создании определённых экспериментальных условий и их стабильности во времени с учётом того факта, что астат имеет несколько устойчивых валентных состояний, как аналог йода. Всё это привело исследователей к открытию целого ряда новых свойств элемента, на основе которых были разработаны методы выделения ультрамикроколичеств At из сложных смесей продуктов ядерных реакций и синтеза ряда неорганических и органических соединений астата [19]. В последнее время было показано, что перспективными для применения в радиотерапии по своим свойствам могут быть такие препараты с At как метиленовый голубой, моноклональные антитела (МКАТ), коллоидный металлический Те (размер зёрен 3-5 мкм) с сорбированным At [19, 20]. [c.356]


    Стратегия экспериментов, нацеленных на синтез новых изотопов, определяется в значительной степени радиоактивными свойствами, и, прежде всего, временами жизни синтезируемых нуклидов. Времена жизни могут варьироваться в широких пределах (от мкс), т.е. работа используемых экспериментальных установок должна быть чрезвычайно быстрой. В то же время продукты испарения нейтронов, выход которых очень мал, должны сепарироваться за короткое время от огромного количества побочных продуктов, вероятность образования которых выше на восемь-десять порядков величины. Такие условия выполняются при сепарации in-flight (за временной интервал 10 -10 с) с учётом кинематических характеристик различных каналов реакции. [c.48]

    Условия проведения реакций каталитического дегалоидирования с точки зрения получения соединений, меченых тритием, рассмотрены в работе [34 . Дегалоидирование изучали при разных давлениях газообразного трития, температурах, продолжительности реакции и концентрациях галоидзамещенных соединений. Процессы, протекающие с участием изотопов водорода в системе водород-палладий-растворитель, и влияние всех компонентов этой системы на молярную радиоактивность препаратов рассмотрены в обзоре [35]. В этой работе приведены следующие закономерности, обнаруженные при замене атома галоида на тритий. Если скорость реакции дегалоидирования много выше скорости изотопного обмена трития с растворителем, то молярная радиоактивность продукта реакции будет равной молярной радиоактивности газообразного трития, с учётом изотопных эффектов водорода при растворении и адсорбции на палладии (для этого процесса значение коэффициентов разделения протий-тритий достигали 2,5). Если скорость основной реакции сравнима или меньше скорости изотопного обмена с растворителем, то происходит непрерывное разбавление трития протием. Подобный процесс хорошо иллюстрируется данными, приведёнными в табл. 19.1.8. [c.500]

    Таким образом, величина молярной радиоактивности биологически активных соединений связана с разделением изотопов водорода при их растворении в палладии, что, как уже было показано выше, является многостадийным процессом. Есть несколько возможностей уменьшить негативные последствия этого явления. Один из них — применение катализаторов с низким (0,01-0,05%) содержанием палладия на носителе. В подобных катализаторах [35] изотопы водорода практически не растворяются, и гидридная форма отсутствует. С учётом коэффициента разделения протий-тритий при фазовом и адсорбционном равновесии на палладии, равном 2,5, молярная радиоактивность препаратов при замене одного атома галлоида на тритий должна достигать 0,94 ПБк/моль, что соответствует экспериментальным данным [36. Но на практике такие катализаторы оказались очень неустойчивыми к отравлению. Поэтому на один миллиграмм исходного соединения необходимо около одного грамма такого катализатора, что приводит к повышенному расходу [c.500]



Смотреть главы в:

Руководство к практическим занятиям по радиохимии -> Учет радиоактивных изотопов




ПОИСК





Смотрите так же термины и статьи:

Изотопы радиоактивные

Хранение и учет радиоактивных изотопов



© 2025 chem21.info Реклама на сайте