Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы газообразные радиоактивные

    См. лит. при ст. Радиационная химия, Радшгционно-химиче ская технология. Радиоактивность. А. X. Брегер. ИОНИТЫ (ионообменники, ионообменные сорбенты), вещества, способные к ионному обмену при контакте с р-рами электролитов. Большинство И.— твердые, нерастворимые, ограниченно набухающие в-ва. Состоят из каркаса (матрицы), несущего положит, или отрицат. заряд, и подвижных противоионов, к-рые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоио-ны р-ра электролита. По знаку заряда обменивающихся ионов И. делят на катиониты, аниониты и амфолиты, по хим. природе каркаса — на неорг., орг. и минер.-органические. Неорг. и орг. И. могут быть природными (напр., цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, АЬОз, сульфоуголь и наиб, важные — ионообменные смолы). Минер.-орг. состоят из орг. полиэлектролита на минер, носителе или неорг. И., диспергированного в полимерном связующем. Выпускаются в виде зерен сферич. или неправильной формы, порошков, волокон, тканей, паст и изделий (напр., мембран ионитовых). Примен. для очистки, разделения и концентрирования в-в из водных, орг. и газообразных сред, напр, для очистки сточных вод, лек. ср-в, сахара, выделения ценных металлов, при водоподго-товке носители в хроматографии гетерог. катализаторы. [c.224]


    При установке источника в дно ионизационной камеры (тип А) могут применяться серийные, изготавливаемые для других целей дисковые источники, обладающие высокой механической прочностью. Излучение в этом случае используется относительно плохо. В варианте В источник является внешним цилиндрическим электродом ионизационной камеры. Эта форма удобна в том случае, когда радиоактивное вещество находится в виде металлической фольги (стронций-90, радий-В, тритий). Она применяется в большинстве серийно изготовляемых радиоизотопных детекторов. Установка источника в качестве внутреннего электрода (тип С) обеспечивает оптимальное использование излучения, особенно в случае применения газообразного радиоактивного вещества (криптон-85). В этой конструкции величина и форма ионизационной камеры могут быть легко изменены при сохранении формы источника. Для того чтобы избежать рекомбинации ионов с электронами или захвата электронов, следует обеспечить возможно большую однородность и высокую напряженность поля между электродами. [c.141]

    В последнее время особое значение приобретает комбинирование методов исследования, позволяющее сочетать определение кинетических параметров реакции разряда ионов или ионизации атомов путем измерения величины поляризующего тока с такими, например, методами, как волюметрический метод (при выделении газообразных продуктов), гравиметрический метод (в случае электроосаждения металлов), а также метод, основанный на исследовании адсорбции с применением радиоактивных индикаторов. [c.322]

    Фактически процесс диффузии при радиоактивном загрязнении значительно сложнее, чем его стационарное протекание, представленное уравнением (11.12). В этом уравнении коэффициент диффузии численно равен скорости переноса массы диффундируемого вещества. Наибольщий коэффициент диффузии имеют газообразные вещества, для которых он достигает 10 м -с . В жидкой среде коэффициент диффузии радиоактивных веществ, находящихся в ионной и молекулярной формах, составляет соответственно 10 и 10 с , а в твердых телах он еще меньше (порядка 10м с ). Значительно меньше коэффициент диффузии радионуклидов в полимерных материалах, таких как поливиниловый спирт (10 -10 м с ). Глубинное загрязнение (например бетона) происходит в результате капиллярного смачивания мелких пор раствором радиоактивного вещества. В мелкие, так называемые мезопоры размером 1,2 нм проникновение радионуклида из воздушной среды происходит в результате капиллярной конденсации. Если после конденсации образуется жидкость, которая смачивает поверхность пор, то в них возникает вогнутый мениск. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской. В связи с этим в порах происходит капиллярная конденсация при давлении паров радиоактивной жидкости, значительно меньшем по сравнению с давлением паров над плоской поверхностью. [c.186]


    Один из простейщих случаев изотопного обмена по описанному механизму был установлен в 1934 г. С. 3. Рогинским с сотрудниками [И]. Газообразный бром продувался через раствор бромида калия, содержащий радиоактивный изотоп Вг при этом наблюдался мгновенный обмен между бромид-ионами и элементарным бромом. Механизм этого обмена, по мнению С. 3. Рогинского, заключается в следующем. Ион брома образует с молекулой брома отрицательно заряженный полигалоид-ный ион Вг ", в котором все три атома брома равноценны. Распад иона BrJ может происходить с разрывом любой из трех равноценных связей и с фиксацией отрицательного заряда на любом атоме брома. [c.190]

    Чтобы в таком коротком курсе дать читателю наглядное и четкое представление о молекулярных основах жизни, приходится с большой осторожностью подходить к подбору излагаемого материала. Весь вопрос в том, что и как сократить. Прежде всего следует учитывать относительную важность излагаемого материала. Так с точки зрения медицинской химии элементарный фосфор не имеет такого значения, как, например, аденозинтрифосфат с ионами водорода приходится сталкиваться гораздо чаще, чем с газообразным водородом оксигемоглобин важнее двуокиси кремния влияние радиоактивных излучений на молекулярные превращения в нашем организме интересует нас больше, чем подробности о [c.7]

    Цеолиты выпускаются промышленностью. Основная область их применения — катализ, хроматография и адсорбция газообразных веществ [6, с. 124 190, 191]. Ионный обмен на цеолитах используется главным образом для модифицирования их как сорбентов и катализаторов. Однако широко известны применения цеолитов и других алюмосиликатов для сорбции из растворов [148,149, 191]. Можно отметить возрастающее внимание исследователей разных стран к природным глинистым минералам, цеолитам и полевым шпатам, как дешевым ионообменным материалам для дезактивации радиоактивных отходов (см. гл. XII). [c.175]

    Радиолиз чистого этилового спирта был исследован Мак Доннелом и Ньютоном при действии ускоренных до 27 Мэв ионов гелия [2], т. о. в условиях значительной плотности ионизации по следу частиц. Авторами было установлено, что основными продуктами при облучении первичных спиртов являются водород, альдегид, вода и гликоли, и что только метиловый спирт дает хороший баланс между идентифицированными продуктами дегидрогенизации и водородом, а в более высокомолекулярных спиртах выделяется избыток водорода. Исследование радиолиза метилового спирта, под действием внутреннего источника р-излучения [3] —радиоактивного углерода, введенного в состав СН3ОН, показало, что в этом случае газообразные продукты содержат, кроме водорода, метан, а в жидкой фазе появляются этиленгликоль, глицерин и следы эритрола, но не был обнаружен формальдегид. Опубликованных исследований по радио-лизу спирта в присутствии кислорода пе имеется. [c.163]

    Все молекулярные и ионные разновидности углекислоты в буфере находятся в равновесии друг с другом и с газообразной углекислотой в замкнутом пространстве над буфером. Поэтому принципиально безразлично, каким путем метить буфер, — вводить ли газообразную углекислоту с радиоактивным углеродом или прибавлять к буферу карбонат или бикарбонат, содержащий С . Необходимо только выждать некоторое время, пока установится равновесие. Практически удобнее применять [c.31]

    МАКРО- И МИКРОКОМПОНЁНТЫ в радиохимии, компоненты систем, содержащих радионуклиды. Макрокомпонент (обычно нерадиоактивный или слабо радиоактивный) находится в системе в значительной массовой концентрации, а микрокомпонент (обычно радиоактивный) присутствует в виде примеси. Точные границы концентраций, в пределах к-рых в-во можно отнести к макро- или микрокомпоненту, не определены. Обычно принимают, что концентрация макрокомпонента должна быть настолько большой, чтобы его содержание как во всей системе, так и в отдельных ее фазах можно было достаточно точно определить обычными аналит. методами. Граница концентрации в-ва, ниже к-рой его можно считать микрокомпонентом, в разных системах варьирует от I до 10 мол.% и менее. Термодинамически микрокомпонент - это в-во, наличие к-рого в системе не вызывает существ, изменения коэф. термодинамич. активности макрокомпонента. Если макрокомпонент первоначально находился в системе в газообразной фазе или в р-ре, то при определенных условиях (понижение т-ры, удаление р-рителя, изменение pH и т.п.) он способен образовать собственную твердую или жидкую фазу, а микрокомпонент неизменно остается в паре или р-ре. Если микрокомпонент диссоциирует в р-ре на ионы, то произведение концентраций ионов значительно ниже произведения р-римости микрокомпонента (см. Произведение активностей). [c.631]

    В настоящем обсуждении этот предмет, известный под названием радиационной химии, подробно рассматриваться не будет. В основном внимание будет сосредоточено на обладающих большой энергией и обычно радиоактивных атомах, которые возникают при ядерных реакциях, протекающих с изменением заряда ядра. Несмотря на то, что эти частицы имеют большую энергию, они в большинстве случаев являются в основном не ионизирующими, так как благодаря своей большой массе они имеют небольшую скорость. Мы будем рассматривать их как частицы, которые при столкновениях передают свою энергию другим атомам, ионам и молекулам в системе и достигают в конце концов некоторого стабильного или метастабильного состояния. Наша задача заключается в том, чтобы предсказывать и объяснять эти конечные состояния. Эта точка зрения основывается на принципе, который нуждается в дальнейшем пояснении, а именно, что вероятность диссоциации любой определенной молекулы в результате ионизации вообще очень мала. Предположим, например, что процесс поглощения рентгеновских лучей каким-то образом обусловливал бы радиоактивность атома кислорода в молекуле воды каждый раз, когда происходит выбивание электрона. В этом случае сформулированный выше принцип означает, что выделяющийся газообразный кислород не содержал бы почти весь радиоактивный кислород, а фактически мог бы содержать лишь немногим больше, чем можно ожидать при равномерном распределении его среди всех молекул воды, т. е. точно так же, как если бы процессы ионизациии появления радиоактивности были бынезависимы. [c.223]


    Может оказаться, что конечный раствор содержит небольшое количество осадка это может быть обусловлено тем, что используемые стеклянные сосуды не очень чисты, что смолу не промывают тщательно для удаления избытка иона аммония, используемого при регенерации, что дистиллированная вода недостаточно чиста, а соляная кислота приготовлена из дважды перегнанной воды и газообразного хлористого водорода не непосредственно перед опытом. Методика в целом очень быстрая, так как требует 30 мин или менее и дает отличные результаты при неоднократном использовании. В некоторых случаях незначительные радиоактивные загрязнения обуслсвлены присутствием небольшого количества нерастворимого вещества, образовавшегося на стадии растворения, которое иногда трудно удалить полностью при центрифугировании. Когда на очистку можно затратить еще 10—15 мин, то можно между осаждением кремневольфрамовой кислоты и ионообменной стадией провести осаждение ТЬ(0Н)4 с использованием гидроокиси кальция в качестве осадителя. Осаждение ТЬ(0Н)4 обеспечивает отделение этого осадка и многих возможных загрязнений (особенно следов протактиния), соосаждающнхся с ним. [c.30]

    Эффект Вавилова — Черенкоаа — излучение света, возникающее при движении в веществе (газообразном, жидком, твердом) заряженных частиц со скоростью, превышающей скорость распространения световых волн (фазовую скорость) в этой среде [51. Это условней требование когерентности ограничивают спектральный диапазон излучения Вавилова — Черенкова в коротковолновой области — началом рентгеновской части спектра, в длииноволаовой — областью радиочастот. Излучение возникает во всех биообъектах под действием естественного радиоактивного облучения (космические излучения и излучения изотопов химических элементов как внешней среды, так и внутренней среды биообъекта) и искусственного облучения при энергиях, превышающих пороговую энергию возникновения излучения в водной среде [51. Для воды пороговая энергия электрона = = 0,26 мэВ. (Зсновной излучатель в клетке ион калия К с = 1,325 мэВ и периодом полураспада т = 1,2. 10 лет. Содержание — [c.161]

    Для исследования в растениях процессов фотосинтеза, корневого питания, водного режима, синтеза органических веществ, обмена веществ и т, д, широко применяют радиоактивные и стабильные изотопы. Для этого используют метод меченых атомов в растение через листья или корни вводят вещества, содержащие изотопы элементов, а потом определяют наличие их в тканях органов растений или в отдельных веществах, выделенных из растений. Методы измерения радиоактивности основаны на способности излучений радиоактивного распада ионизировать атомы, встречающиеся иа их пути в специальной ионизационной камере. Радиоактивные изотопы углерода С и фосфора Р при распаде излучают -частицы — электроны. Для измерения таких излучений применяют счетчик Гейгера — Мюллера и специальные пересчетные приборы. Стабильные изотопы определяют на масс-спектрометре. Принцип действия это1 о прибора заключается в том, что используемый элемент вводят в трубку масс-спектрометра в форме газообразного соединения, газ ионизируется, и ионы с разной массой распределяются под действием электрического и магнитного полей. Соотношение концентраций изотопов определяют путем измерения соответствующих показателей силы электрического тока. [c.15]


Смотреть страницы где упоминается термин Ионы газообразные радиоактивные: [c.319]    [c.76]    [c.125]    [c.178]    [c.59]    [c.142]   
Физическая химия Книга 2 (1962) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты радиоактивность



© 2025 chem21.info Реклама на сайте