Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория молекулярных орбит поверхностной связи

    Свойства поверхности кристалла при Т <Тс анализировали с позиций классической и квантовохимической теории связи. Расчеты показали, что в приповерхностной зоне ионных кристаллов на ионы действует несимметричное электрическое поле, которое должно смещать катионы слоя 8 к слою Г на 1—15% от параметра решетки [46, 47]. Тенденция к смещению анионов под действием несимметричного поля частично компенсируется их поляризацией, в результате чего анионы смещаются к слою Г значительно меньше, а в некоторых случаях даже удаляются от него, например, как в кристаллах фторида лития и хлорида натрия [47]. Асимметрия поля вблизи поверхности кристаллов является также при- чиной тангенциального смещения ио-нов, а именно, сближения противоио-нов с образованием квазимолекуляр-ных пар , расположенных правильными рядами, что приводит к увеличению степени ковалентности связи в слое 8 [48, 49]. В случае ковалентных и металлических кристаллов слой и ряд глубинных монослоев смещаются от центра кристалла [50—52], что связано с ослаблением связи, в частности, из-за регибридизации молекулярных орбита-лей в поверхностном слое [51]. Степень смещения слоев согласно квантовомеханической теории должна быстро убывать по мере перехода к более глубоким слоям кристалла (рис. 4.5). [c.65]


    Исходя ИЗ результатов, полученных с помощью ионного проектора, Брилль, Рихтер и Рух [67] пришли к заключению, что азот адсорбируется преимущественно на грани (111) железа. Согласно представлению Руха, основанного на теории химической связи, хемосорбция молекулярного азота обусловлена перекрыванием заполненной л -орбитали N2 и незаполненной низко-энергетической поверхностной орбитали Fe. При этом связь в молекуле N2 ослабляется. Особенно благоприятные условия для этого имеются на грани (111). Однако грань (111) не является равновесной гранью железа, к которым принадлежат грани (100J и (110). Благодаря адсорбции N2 поверхностная энергия грани (111) уменьшается, и эта грань становится равновесной. Промышленный железный катализатор восстанавливают в потоке азото-водородной смеси, что создает условия для образования граней (111) на поверхности кристаллов. Цвитеринг и Вестрик [68] установили, что железный катализатор, полученный восстановлением магнетита, имеет главным образом грани (111). Таубе [69] провел синтез аммиака на усах железа, которые были огранены только гранями (100) и (ПО). Выход аммиака не составил и 1% получаемого на обычных железных катализаторах. Мольер и Берндт [70] исследовали эти усы методом ДМЭ и не смогли обнаружить адсорбции азота на них. Шмидт [71] методом масс-спектрометрии с эмиссией ионов полем показал, что первым промежуточным продуктом на поверхности катализатора, вероятно, является N2H. Соответствующий поверхностный комплекс может иметь строение, показанное на рис. 63. [c.138]


Смотреть главы в:

Катализ полифункциональные катализаторы и сложные реакции -> Теория молекулярных орбит поверхностной связи




ПОИСК





Смотрите так же термины и статьи:

Орбита

Орбиты связи

Связь теория

Теории поверхностных



© 2025 chem21.info Реклама на сайте