Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностно-активные вещества комплексы с металлами

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]


    Н. А. Изгарышев и П, С. Титов впервые (1917 г.) изучили влияние поверхностно-активных веществ (желатина, гуммиарабика) на электроосаждение цинка и меди. Они высказали предположение, что дисперсные частицы органического вещества образуют с разряжающимися ионами металла адсорбционные комплексы, для разряда которых требуется повышенная катодная поляризация. [c.345]

    В настоящее время нет единой теории, объясняющей механизм действия поверхностно активных веществ на структуру электролитических осадков. Согласно теории комплексообразования, добавки образуют в объеме раствора с разряжающимися ионами металла своеобразные адсорбционные комплексы. При этом катодная поляризация повыщается в результате замедленности образования в прикатодном слое разряжающихся ионов из комплекса. По-видимому, эта точка зрения справедлива лишь в тех случаях, когда добавки вводят Б электролит в больших количествах, однако, как правило, поверхностно активные вещества применяют в малых концентрациях. Согласно адсорбционной теории действия добавок, поверхностно активные вещества, адсорбируясь на отдельных активных участках, способствуют равномерному росту осадка. Поскольку при этом активная часть поверхности катода сокращается, повыщается плотность тока (катодная поляризация), что благоприятствует формированию мелкокристаллических осадков. При этом в ходе электролиза возможно перераспределение участков адсорбции и десорбции добавок. [c.248]

    Адсорбция ПАВ возможна не только непосредственно на металле анода, но и на кристаллах соли, которые образуются в результате протекания анодной реакции. В этом случае в результате адсорбции ПАВ пассивное состояние электрода наступает быстрее из-за образования такого солевого слоя. Необходимо, однако, заметить, что адсорбция не всегда приводит к торможению анодного процесса. В некоторых случаях возможна активация анодного растворения в результате образования комплексов с ионами растворяемого металла либо вследствие разрушения пассивирующего слоя частицами ПАВ. Такие явления наблюдаются преимущественно при адсорбции неорганических анионов. Аналогичный эффект отмечен А. И. Левиным с сотрудниками в случае анодного растворения металла (меди) в присутствии органических соединений. Было замечено, что введение высокомолекулярных и коллоидных поверхностно активных веществ влияет также на вязкость раствора. [c.429]


    Сульфоксиды, полученные окислением производных сульфидов, применяются как вещества, образующие комплексы с металлами как дезактивирующие агенты, стабилизаторы, поверхностно-активные вещества, добавки к маслам и резинам в качестве лекарственных веществ в производстве пластмасс, пластификаторов и т. п. [c.69]

    Комплексы металлов и поверхностно-активные вещества [c.381]

    Около 90% потребляемого триполифосфата натрия используется в производстве синтетических моющих средств, в прочих областях— 4%-Экспорт составляет 5%. Использование полифосфатов натрия и калия в производстве моющих средств основано на их способности образовывать растворимые комплексы со щелочноземельными металлами, в результате чего устраняется жесткость воды, а также на способности удерживать загрязнения в суспендированном состоянии и предотвращать их оседание на ткани. В присутствии полифосфатов усиливается также моющий эффект поверхностно-активных веществ. [c.368]

    Это различие в величине и механизме перенапряжения обусловливает, согласно Фольмеру, различный характер осадков, в виде которых нормальные и инертные металлы выделяются на катоде. Все факторы, вызывающие торможение акта разряда, должны, с этой точки зрения, уменьшать относительную роль кристаллизационных явлений и приводить к получению равномерных и мелкозернистых осадков. Увеличение торможения достигается или переводом простых ионов в более прочные комплексы, или при помощи добавок поверхностно-активных веществ (если их адсорбция больше всего сказывается на акте разряда). Изменение структуры осадков, наблюдаемое при переходе от простых электролитов к цианистым, а также характер электроосаждения в условиях адсорбционной поляризации подтверждают эту точку зрения. [c.435]

    Необходимо отметить, что аскорбиновая кислота и ее эфиры с жирными кислотами, как и многие другие синергисты, одновременно несут функцию деактиваторов металлов [169—1/21. В качестве деактиваторов металлов могут выступать также некоторые белки, углеводы и поверхностно активные вещества, способные образовывать комплексы с переходными металлами. Комплексообразующее действие белков растет при переходе от pH 3 к pH 8. Это связано, по-видимому, с тем, что при переходе от кислой к нейтральной среде происходит постепенная диссоциация фосфатных, карбоксильных, имидазольных и и-ами-ногрупп белковой молекулы, и при этом увеличивается сродство белка к ионам металла. Способность белковой молекулы к образованию комплекса с металло.м в сильно степени зав 1С1 т от природы металла, причем как правило с ла взаимоде Ств 1л падает в ряду [c.228]

    При выделении катионов щелочных и щелочноземельных металлов значение pH определяет диссоциацию поверхностно-активного вещества и устойчивость комплексов последнего с катионом [21, 56]. Таков же механизм влияния pH и тогда, когда для выделения катионов кроме поверхностно-активного вещества используют и комплексообразователь [55]. [c.111]

    Согласно теории комплексообразоваиия, коллоидные соединения образуют комплексы с катионами металлов. Вследствие прочной адсорбционной связи между органическими коллоидами и катионами металлов процесс разряда комплексных ионов замедляется, поэтому разряд ионов металла на катоде в присутствии коллоидной добавки протекает при повышенной. поляризации. Влияние коллоидов и поверхностно-активных веществ объясняется также адсорбцией их поверхностью катода. Поверхностно-активные вещества могут адсорбироваться либо всей поверхностью катода, либо отдельными участками его поверхности. В первом [c.121]

    Медь очень хорошо определяется полярографическим методом. При восстановлении Си + в растворах, не образующих с ней комплексов (например, в растворах нитратов, сульфатов), медь дает одну волну с потенциалом полуволны +0,02 в (нас. к. э.), так как при этом Си +восстанавливается до металла. На полярограммах образуется значительный максимум, который легко подавляется желатином или другими поверхностно-активными веществами. На фоне 30%-ного раствора хлорида кальция Сп2+ дает волну с потенциалом полуволны 1/2==—0,28 в (нас. к. э.) при рН=4,5—6,0 волна имеет небольшой максимум . [c.190]

    Значительное влияние на поляризацию при. катодном осаждении металлов оказывают коллоидные и поверхностно-активные вещества, присутствующие в небольших количествах в электролитах. Добавки, дающие коллоидные растворы, образуют с разряжающимися ионами металла комплексы адсорбционного характера. Повышение катодной поляризации при этом объясняется недостаточной скоростью выделения ионов металла из коллоидного комплекса в прикатодном слое. Примером такого случая может служить катодное выделение цинка из сернокислых растворов в присутствии желатина (рис. 139, кривые 1—4). Понижение поляризации при больших концентрациях добавки объясняется укрупнением частиц коллоидов, их коагуляцией и связанным с этим ослаблением комплексообразования. [c.339]


    В образовании адсорбционных слоев принимают участие вещества V с высокой поверхностной активностью, такие как нафтенаты и соеди- нения типа порфиринов. Порфирины и металл-порфириновые комплексы (остатки хлорофилла и гематина [30]) обнаружены во многих нефтях. Из металл-порфириновых соединений в нефтях наиболее [c.19]

    Синтетические поверхностно-активные соединения. — Мыла до сих пор являются наиболее широко применяемыми моющими веществами, однако их использование имеет определенные ограничения мыла неустойчивы в кислых растворах, многие соли жирных кислот нерастворимы в воде. В жесткой воде, которая содержит ионы кальция и магния, в результате обменной реакции образуются нерастворимые мыла. Этот процесс может быть предотвращен добавлением в воду больших количеств пирофосфата натрия, гексаметафосфата натрия или аналогичных соединений, действие которых состоит, по-видимому, в -образовании воднорастворимых комплексов с нежелательными ионами металлов. [c.599]

    Загрязнение вод может быть вызвано разнообразными химическими веществами. Одновременное присутствие в водной среде фенолов, тяжелых металлов, нефтепродуктов, пестицидов, синтетических поверхностно-активных и других химических веществ создает значительные трудности при контроле загрязнения вод и оценке их качества. Возможности аналитической химии, даже нри условии значительного усовершенствования существующих и создания комплекса новых методик, в проведении эффективного контроля загрязнения вод вредными веществами отнюдь не безграничны. Поэтому возникает объек- [c.27]

    Для устранения перечисленных недостатков в эксплуатации систем оборотного водоснабжения рекомендуется предварительно очищать и обрабатывать новую систему или систему после некоторой эксплуатации по меньшей мере в течение двух недель предварительно обрабатывать оборотную воду до снижения концентрации цинк-хроматного ингибитора до нормальной величины удваивать дозу этого ингибитора после работы системы с водой, имеющей рН<6, или после обработки воды дозой ингибитора не ниже 12 мг/л (по Сг4 -). Проблема может быть решена также другим путем. В дополнение к цинк-хроматному ингибитору можно вводить металлорганические соединения на основе цинка. В состав этих соединений входят органические вещества, которые являются поверхностно-активными. Они воздействуют на металлическую поверхность и непрерывно очищают ее. Кроме того, цинк, находящийся в составе комплекса, соединяется с гидроксильными ионами только на катодных участках. Это помогает избежать быстрого снижения концентрации цинка в воде и получить желаемую тонкую пленку его гидроксида. Более того, органическое вещество помогает создать защитную пленку оксида железа на анодных участках поверхности металла. Это дает более плотное защитное покрытие и обеспечивает необходимую концентрацию хромат-иона в воде. [c.89]

    В ряде случаев, когда органическое соединение полярографически неактивно, определение таких веществ можно проводить, используя их способность адсорбироваться на поверхности электрода (см. 1). Так определяют большую группу поверхностно-активных органических веществ. Кроме того, анализ можно проводить косвенным методом, например путем синтеза комплексов этих веществ с металлами, которые могут быть проанализированы полярографически. [c.177]

    Явление повышения поверхностной активности растворов моющих веществ под влиянием некоторых органических соединений известно давно, и различные широко применяемые добавки уже были описаны в томе I. Список веществ, усиливающих пенообразующие и моющее действие, продолжает непрерывно возрастать, причем в наибольшей степени это касается соединений, образующих комплексы с тяжелыми металлами, и суспендирующих агентов. [c.221]

    В разное время были выполнены работы по выделению поверхностно-активных веществ, в частности из нефтей Оклахомы и Калифорнии [21—26]. Было показано, что поверхностно-активные вещества содержат в своем составе металлы и что ванадий- и нн-кель-норфириновые комплексы стимулируют поверхностную активность нефтей. В опытах по вытеснению нефти водой из заполненной грунтом колонки было показано, что извлечение нефтп зависит от преодоления стойких граничных пленок, образующихся на водопефтяиых контактах и способствующих прилипанию нефти к гидрофильной, увлажненной водой поверхности твердых частиц. В этих опытах было установлено, что поверхностно-активными веществами в таких контактах являются асфальтеновые вещества. В одном из исследований было отмечено, что содержание асфальтеновых компонентов в нефти не компенсирует найденной поверхностной активности нефти [28]. Не удалось объяснить общую активность нефти и эффектом, обусловленным присутствием в ней порфиринов. Было высказано предположение о динамической роли асфальтенов в процессе зарождающейся флокуляции при осаждении их водой, капельки которой сами оказываются вовлеченными в процесс и обволакиваются пленками смол и асфальтенов. При добавке к нефти предварительно осажденных асфальтенов не было обнаружено соответствующей поверхностной активности. [c.196]

    Не во всех комплексных растворах осадки металлов на катоде получаются мелкозернистыми и однородными по структуре. Так, при электролизе станнитных и плюмбитных растворов, протекающем при очень малой поляризации, а также в некоторых -аммиачных растворах в отсутствие поверхностно-активных веществ осадки на катоде по структуре мало отличаются от осадков тех же металлов из растворов простых солей. Возможно, что в таких растворах, по крайней мере до некоторого значения потенциала или до определенной плотности тока, разряжаются гидратированные ионы или комплексы с меньшим числом аддендов, для разряда которых требуется меньшая энергия активации процесса и концентрация которых в растворе, не слишком мала. [c.245]

    Способ адсорбционного концентрирования (как комплексов металлов с органическими лигандами, так и органических соединений) по своему принципу близок к рассмотренному в предыдущем разделе. Особую популярность он получил в последние годы. Благодаря адсорбционному концентрированию с помощью инверсионной вольтамперометрии удается определять щелочные и щелочноземельные металлы, элементы подгруппы алюминия и иттрия, не говоря уже о традиционных для инверсионной вольтамперометрии элементах, таких как 8п, РЬ, Сс1 и др. Как правило, адсорбционное концентрирование связано с применением поверхностно-активных веществ, вводимых в анализируемый раствор. При этом существенно, чтобы потенциалы электропревращения органического реагента и его соединения с металлом различались на максимально возможную величину. Преимуществом адсорбционного концентрирования является также слабое влияние потенциала электрода на адсорбцию комплексов, что позволяет проводить концентрирование даже при разомкнутой цепи. Нижняя граница определяемых концентраций в ряде случаев, например при определении серосодержащих соединений, достигает 10 - 10 моль/л и ниже. [c.431]

    В качестве магнитного носителя предложено также использовать комбинацию соединений редкоземельных металлов с кобальтом, которые оказались более предпочтительными по сравнению с другими комплексами. Один из оптимальных магнитных носителей альбуминовые микросферы, состоящие из матрицы полимеризованного сывороточного альбумина размером 0,2—2 мкм, в которую введено до 50% магнетита Рсз04 размером 10—100 нм и в которой содержится 5% лекарственного препарарга. Агрегация мелкодисперсных частиц в поле может быть осуществлена за счет внесения поверхностно-активных веществ, что позволило существенно снизить их размер и получить магнитные жид- [c.651]

    Плато предельного диффузионного тока полярографической волны часто искажается наложенным максимумом, который может быть обусловлен неравномерным подводом деполяризатора к капельному электроду. Эти максимумы можно подавить добавлением следов поверхностно-активного вещества. При изучении комплексов металлов чистая желатина, тритон Х-100, цетилтрнметиламмонийбромид, метиловая целлюлоза, метиловый красный и фуксин применяются как подавители максимума. Часто пригодны концентрации 0,005—0,017о, но каждый раз необходимо доказывать отсутствие конкурирующего комплексообразования. Тритон Х-100, по-видимому, — наилучший из этих реагентов , он образует устойчивые растворы. Однако применение подавителей максимума ни в коем случае не является обязательным [4] и желательно избегать применения любого из них, если это возможно [5, 45, 50, 63]. [c.215]

    Ребиндера) и показал (1930— 1940) пути облегчения обработки очень твердых и труднообрабатываемых материалов. Обнаружил электрокаииллярный эффект пластифицирования металлических монокристаллов в процессе ползучести при поляризации их поверхности в растворах электролитов. Исследовал особенности водных растворов поверхностно-активных веществ (ПАВ), влияние адсорбционных слоев на свойства дисперсных систем. Выявил (1935—1940) основные закономерности образования и стабилизации пен и эмульсий, а также процесса обращения фаз в эмульсиях. Установил, что моющее действие включает сложный комплекс коллоидно-химических процессов. Изучал образование и строение мицелл ПАВ, развил представления о термодинамически устойчивой мицелле мыл с лиофобным внутренним ядром в лиофильной среде. Выбрал и обосновал оптимальные параметры для характеристики реологических свойств дисперсных систем и предложил методы для их определения. Выяснил механизм гидратационно-го твердения минеральных вяжущих, Открыл (1956) явление адсорбционного понижения прочности металлов под действием металлических расплавов. Создал (19й0-е) новую область науки — физикохимическую механику. [c.420]

    В химической промышленности существуют многочисленные случаи, когда недопустимо присутствие даже самых незначительных количеств примесей, не обладающих поверхностной активностью. Например, предпринимались попытки удалить следы металлов из раствора пенным методом разделения. Однако, поскольку диссоциированные растворы, содержащие ионы металлов, не обладают поверхностной активностью, вспенивание таких растворов не позволяет концентрировать или обогащать их. Для осуществления такого разделения необходимо сначала сообщить ионам металлов поверхностную активность. Были выполнены обширные работы [641, большую часть которых проводили с целью удаления ионов некоторых металлов (стронция и цезия) из радиоактивных отходов. Для придания поверхностной активности ионам металлов эти ионы связывали в виде комплексов, хелатных или других соединений ионов с поверхностно-активными материалами. Растворы с различной концентрацией стронция вспенивали, применяя арескап-100 (промышленное анионное поверхностно-активное вещество) в качестве комплексообразующего и вспенивающего агента. Связанные в виде комплексов ионы металла выделялись из водной фазы и концентрировались в пене. Кроме того, было обнаружено, что с уменьшением концентрации стронция в растворе коэффициент концентрирования сравнительно быстро возрастал. [c.110]

    Поляризация при осаждении металла очень чувствительна к составу раствора. Она сильно увеличивается при наличии в растворе ряда комплексообразователей, а также поверхностно-активных веществ. В гальванотехнике широко распространено осаждение металлов из растворов комплексных солей да ного металла, например цианидных комплексов. В таких растворах металл входит в состав разных комплексных анионов типа M( N)i с разными значениями к, находящихся в равновесии друг с другом (см. разд. 10.9). Так как катодное осаждение металлов чаше всего происходит в области потенциалов, где поверхность заряжена отрицательно и ) -потенциал принн-.мает отрицательные значения, приповерхностная концентрация анионов меньше, чем в объеме раствора (см. разд. 14.2). Этот эффект выражен тем сильнее, чем выше зарядность аниона. Поэтому можно считать, что разряду подвергаются только частицы с низким отрицатель 1Ым зарядом (к—z+)Qo, даже если их относите.льная концентрация мала. Сильная поляризация при разряде этих ионов может быть обусловлена рядом причин замедленной химической стадией восполнения запаса реагирующих частиц в результате диссоциации комплексов с более высоким значением к, замедленной десорбцией лигандов с поверхности после разряда ионов и др. Иногда наблюдается спад тока после перехода через т. и. з. — эффект электростатического отталкивания анионов с отрицательно заряженной поверхности (ср. рис. 14.5). [c.351]

    Некоторые авторы полагают, что бл ескообразователи или продукты их катодного восстановления, адсорбируясь на катоде, благоприятствуют росту кристаллов в плоскости, параллельной поверхности покрываемого металла. Происходит поочередная адсорбция и десорбция добавок. В качестве доказательства этой гипотезы приводится слоистость блестящих осадков. Однако слоистость покрытий не обязательно обусловливается адсорбцией и десорбцией поверхностно активных веществ. Например, слоистое строение некоторых покрытий вызывается неравномерностью выделения водорода на катоде [108]. Согласно второй теории, блескообразователи адсорбируются не на всей поверхности катода, а лишь на ее активных центрах [109, 118, 132]. По мнению Ю. Ю. Матулиса [109, 133], блескообразователи не успевают диффундировать ко всем катодным участкам из-за их малой концентрации по сравнению с другими компонентами раствора. Он считает, что блеск осадков во многих случаях вызывается не первичными добавками, а продуктами их восстановления выделяющимся на катоде водородом или продуктами их взаимодействия с электролитом. Как правило, адсорбционная пленка представляет собой золь высокой степени дисперсности. Стабилизируется этот золь либо защитными коллоидами, либо образованием комплексов с блескообразователями. [c.27]

    В фотометрическом анализе применяют различные типы окрашенных соединений. Из однороднолигандных комплексов используют преимущественно комплексные и внутрикомплексные (хелат-ные) соединения ионов металлов с органическими реагентами. Для ряда металлов находят применение ацидокомплексы с неорганическими лигандами (5СЫ", С1", Вг , I"), пероксидные комплексы и гетерополисоединения (Аз, Ое, Мо, Р, 51, V, ). Разнолигандные комплексы могут быть со смешанной координационной сферой и типа ионных ассоциатов все они содержат катионные или анионные хромофорные реагенты, а иногда и поверхностно-активные вещества (ПАВ). Светопоглощение окрашенных растворов зависит от природы светопоглощающих соединений, условий их образования и состава среды. Ниже рассмо  [c.13]

    Ионные ассоциаты по существу представляют собой сочетание внутри- и внешнесферных комплексов и обладают свойствами разнолигандных комплексных соединений, в которых полнее проявляются индивидуальные свойства ионов металлов. Это дает возможность повышать избирательность экстракционно-фотометрического определения металлов. При экстракции с использованием ониевых солей (солей тетрафениларсония, тетрафенилфосфония, тетрафенилсульфония, тетрабутиламмония, цетилпиридиния, ди-фенилгуанидиния и др.) эффективность экстракции увеличивается еще и за счет того, что катионы многих из них одновременно являются коллоидными поверхностно-активными веществами (ПАВ.) В процессе мицеллообразования катионных ПАВ на их поверхности происходит адсорбция анионов металлохромных реагентов, это повышает их концентрацию и способствует образованию более координационно-насыщенных металлокомплексных хелатов [268]. Кислотные свойства адсорбированных реагентов при этом повышаются, а значения pH образования разнолигандных комплексов смещаются в более кислую область, что особенно важно для ионов металлов, реагирующих в кислых средах (Л, 2г, Мо, XV, 8п, Ре). Таким образом, применение катионных ПАВ повышает избирательность экстракционно-фотометрического определения и значительно повышает чувствительность и контрастность реакций ионов металлов с хромофорными реагентами [269—271 ]. [c.212]

    Сравнительно недавно при концентрировании мшфоэлементов из вод начали применять ионную флотацию, или пенное концентрирование [3, 5], хотя первые удачные опыты относятся к 1959 г. [2, 4]. В основу метода положен тот же принцип, что и при обогащении руд. К воде, в которой находятся ионы определяемых металлов, добавляют флотационный реагент (собиратель). Коллиген-ды, в состав которых входят извлекаемые частицы и ионы, образуют с собирателем сублат, легко сорбируемый пузырьками газа,и таким образом с пеной они выносятся на поверхность раствора. Ионы металлов не обладают собственной поверхностной активностью, но образуют гидрофобные комплексы с поверхностно-активными веществами. Варьируя тип флотавдонного реагента, добавки,pH раствора и другие условия, можно осуществить выделение ионов различных металлов. [c.105]

    Одним из направлений повышения защитных свойств покрытий является направленная модификацш серийных лакокрасочных материалов. В качестве модификаторов могут бьпъ использованы различные поверхностно-активные вещества, выпускаемые промышленностью. Защитные свойства таких покрытий обусловлены образованием на поверхности комплексов, обеспечивающих пассивность металла. [c.286]

    Отделение физической химии Заведующий М. W. Roberts Направление научных исследовани химия поверхностно-активных веществ и твердых тел кинетика реакций в газовой фазе каталитическое горение и окисление термодинамика жидких смесей адсорбированные мономолекулярные слои на поверхности раздела жидкость — воздух реакции радиоизотопного обмена ЯМР-спектры твердых полиамидов, аминокислот и пептидов расчеты молекулярных орбит комплексов переходных металлов расчеты полей двухатомных молекул программирование в физической химии. [c.252]

    В ионообменной хроматографии элюентами обычно служат буферные растворы, различающиеся величиной pH, ионной силой, а также способностью к образованию комплексов. Лигандообменная хроматография основана на образовании комплексов разделяемых веществ с коионами ионита (например, с ионами металлов, связанными с функциональными группами катионита). Компоненты анализируемой смеси элюируются с такого модифицированного ионита в порядке уменьшения констант нестойкости их комплексов. Путем обработки ионитов подходящими органическими соединениями ионной природы получают сорбенты с гидрофобной поверхностью, применяемые в так называемой ион-парной хроматографии, которую можно рассматривать как вариант обращенно-фазовой распределительной хроматографии. Добавление в подвижную водную фазу циклодекстринов, поверхностно-активных веществ и других мицеллообразующих соединений в принципе позволяет осуществлять хроматографическое разделение нерастворимых в воде веществ в присутствии водорастворимых ( псевдофазная ЖХ). Мыла и подобные им соединения можно также использовать для покрытия гидрофобной неподвижной фазы с целью придать ей ионообменные свойства ( мыльная хроматография). Ионной хроматографией (см. 4.2, разд. 14.6) назван такой метод раз- [c.19]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Неорганические вещества в обычном состоянии (ионные, молекулярные и коллоидные растворы, гели и суспензии) не обладают собственной поверхностной активностью. Поэтому, например, в методах ионной флотации [1220, 1378, 1400] в раствор вводят специальный флотационный агент катионного или анионного типа, дающий с ионом флотирующийся (гидрофобный) комплекс или сорбирующийся на межфазовой поверхности с сообщением ей заряда, противоположного знаку заряда иона. В качестве ПАВ анионного характера используют обычно натриевые соли высших жирных карбоновых и сульфокарбоновых кислот (фракции Сю— С]б), а в качестве катионных ПАВ — амины и соли четвертичных аммониевых оснований со сложными радикалами (напр имер, три-метилдодециламмонийхлорид). Ионную флотацию используют преимущественно как метод выделения примесей из воды и растворов солей щелочных металлов. Однако подобный метод обогащения пригоден и для анализа некоторых чистых металлов. Например, возможно концентрирование примесей kg, Аи, Со, Си и Ре из растворов, содержащих большие количества солей магния и цинка, с использованием флотации ассоциатов анионных комплексов примесей (с лигандами С2О4 , ЗгОз или N ) с ПАВ катионного характера [1281]. [c.295]

    Полифосфаты нащли широкое применение для умягчения воды (за счет его комплексующего действия, особенно это касается щелочноземельных металлов), в производстве пищевых продуктов, удобрений, поверхностно-активных моющих веществ, фармацевтических препаратов, а также в текстильной и бумажной промышленности. [c.480]

    Тсрможение процесса анодного растворения металла при пассивировании в определенной степени может быть вызвано специфической и электростатической адсорбцией ионов, изменяющих величину ifi -потенциала и образующих поверхностные комплексы, оказывающие определенное влияние на скорость анодного растворения. Однако решающую роль играет изменение строения двойного электрического слоя на поверхности металла и непосредственно на границе металл — раствор. При этом, если происходит образование прочной связи адсорбированного (хемосорбирован-ного вещества с металлом на всей поверхности, то скорость процесса сильно замедляется. По такому механизму происходит пассивирование платины в растворах НС1, причем при адсорбции кислорода в раствор вытесняется эквивалентное число адсорбированных ионов хлора, что и вызывает снижение плотности тока анодного растворения платины по экспоненциальному закону (адсорбционно-электрохимический механизм Б. В. Эршлера). Очевидно, что при пассивировании возможно и неполное покрытие поверхности металла кислородом с образованием поверхностных соединений. В этом случае замедление скорости анодного процесса связано с блокировкой части активной поверхности. [c.353]


Смотреть страницы где упоминается термин Поверхностно-активные вещества комплексы с металлами: [c.21]    [c.285]    [c.27]    [c.143]    [c.24]    [c.63]    [c.175]    [c.3]    [c.459]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Активный комплекс

Комплекс активный Активный

Комплекс активный Активный комплекс

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

Поверхностная активность

Поверхностно-активные вещества

Ряд активности металлов



© 2025 chem21.info Реклама на сайте