Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионное среды, определение при помощи цепей

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]


    Благодаря отсутствию диффузионного потенциала цёпп без переноса широко применяются для определения многих свойств растворов электролитов. Во второй главе и частично в пятой и шестой главах мы ул е подробно рассмотрели применение цепей без переноса для оценки свойств сильных электролитов— концентрационных коэффициентов активности 7 и единых нулевых коэффициентов активности Уо. Кроме того, цепи без переноса широко применяются для определения свойств слабых электролитов. С их помощью определяются константы диссоциации кислот, оснований и солей, ионное произведение среды и т. д. [c.741]

    Молекулы целлюлозы обладают линейной полимерной структурой, которую можно рассматривать как состоящую из большого числа звеньев глюкозы, соедине1шых своими концами при помощи кислородных эфирных мостиков. Средний молекулярный вес обычно определяют путем измерения вязкости пробы, растворенной в водном медноаммиачном или каком-либо другом аналогичном растворе молекулярный вес почти пропорционален вязкости. Длина цепи, или молекулярный вес, обычно выражается как степень полимеризации, представляющая собой среднее число звеньев глюкозы в молекуле целлюлозы. Целлюлоза, используемая для производства вискозного волокна, обычно представляет химическую древесную целлюлозу специальной очистки с начальной степенью полимеризации от 800 до 1000. Степень полимеризации должна быть понижена примерно до 350, чтобы при последующем растворении целлюлозы в смеси сероуглерода и едкого натра с образованием ксантогената целлюлозы раствор обладал такой низкой вязкостью, при которой е1 о можно было бы продавливать через отверстия фильеры. В США для снижения длины цепи целлюлозу замачивают в растворе едкого натра и оставляют ее созревать в течение 20—40 час. в строго определенных, условиях. В щелочной среде кислород воздуха вступает во взаимодействие с цепями целлюлозы и снижает степень полимеризации (если тщательно защитить целлюлозу от доступа воздуха, то такой деполимеризации не наблюдается). Скорость деполимеризации увеличивается при действии небольших количеств ионов многовалентных металлов, например марганца, железа и гп келя, которые действуют в качестве активаторов. Поэтому во избежание неконтролируемых колебаний деполимеризации содержание таких примесей должно быть доведено до минимума. Время, требующееся для деполимеризации, может быть значительно снижено путем добавки к смеси целлюлозы и щелочи таких окислителей, как гипохлориты или перекись водорода. Действительно, перекись водорода используется для этой цели в производстве вискозного волокна в некоторых европейских странах, но, очевидно, не в США. Дальнейшие подробности по этому виду применения и по использованию перекиси для деполимеризации целлюлозы вообще можно найти в сообщении Маргулиса [37] и в одном техническом бюллетене, где приводится обширная библиография [38.  [c.488]


Рис. 19-11. Метод фиксации напряжения, с помощью которого изучают поведение ионных каналов, измеряя ток, протекающий через плазматическую мембран , когда мембранный потенциал поддерживается на каком-либо постоянном уровне. Используются два внутриклеточных электрода - один для контроля мембранного потенциала, а другой для введения в клетку гока определенной величины. Ток, входящий в клетку через электрод, вытекает наружу через ионные каналы в плазматической мембране на рисунке эта цепь выделена цветом. До тех пор пока мембранный потенциал имеет постоянную величину, ток 1, входящий в аксон через электрод, полностью уравновешивается суммарным током, вытекающим из клетки через всю поверхность аксона (в противном случае общий заряд внутри клетки изменился бы, что привело бы к сдвигу мембранного потенциала). Мембранный потенциал можно изменять, уменьшая или увеличивая ток. вытекающий наружу. Электронное устройство, фиксирующее напряжение, следит за мембранным потенциалом V и регулирует величину тока ] гаким образом, чтобы поддерживать V на постоянном уровне любое небольшое отклонение от заданного значения Ус автоматически приводит к изменению величины тока, благодаря чему мембранный потенциал не отклоняется от фиксированного значения У= Ус. Для того чтобы выяснить, как изменяется поведение мембранных каналов с течением времени, нужно резко переключить потенциал с одного фиксированного уровня на другой и проследить за соответствующими токами с помощью осциллоскопа. Измеряя величину тока при разных концентрациях Ма и в среде, можно вычислить, какая часть трансмембранного тока переносится теми и другими ионами, и определить вклад в этот ток N -селективных и К - селективных каналов. Метод фиксации напряжения может быть приспособлен для анализа поведения отдельных молекул, образующих ионные каналы, которые находятся в маленьких участках мембраны, закрывающих отверстие микроэлектрода в этом случае методику называют методом пэтч-клампа . Рис. 19-11. <a href="/info/1408373">Метод фиксации напряжения</a>, с помощью которого изучают <a href="/info/263258">поведение ионных</a> каналов, измеряя ток, <a href="/info/1117739">протекающий</a> <a href="/info/510621">через плазматическую</a> мембран , когда <a href="/info/4005">мембранный потенциал</a> поддерживается на каком-либо постоянном уровне. Используются два <a href="/info/511085">внутриклеточных электрода</a> - один для <a href="/info/1890338">контроля мембранного</a> потенциала, а другой для введения в клетку гока <a href="/info/39290">определенной величины</a>. Ток, входящий в <a href="/info/200488">клетку через</a> электрод, вытекает наружу <a href="/info/104398">через ионные</a> каналы в плазматической мембране на рисунке эта <a href="/info/1708918">цепь выделена</a> цветом. До тех пор <a href="/info/1339391">пока мембранный потенциал</a> имеет <a href="/info/500043">постоянную величину</a>, ток 1, входящий в аксон <a href="/info/1500069">через электрод</a>, полностью уравновешивается <a href="/info/1043804">суммарным током</a>, вытекающим из <a href="/info/200488">клетки через</a> всю поверхность аксона (в противном случае <a href="/info/1735774">общий заряд</a> <a href="/info/1409039">внутри клетки</a> изменился бы, что привело бы к сдвигу <a href="/info/4005">мембранного потенциала</a>). <a href="/info/4005">Мембранный потенциал</a> <a href="/info/1643194">можно изменять</a>, уменьшая или увеличивая ток. вытекающий наружу. <a href="/info/39401">Электронное устройство</a>, фиксирующее напряжение, следит за мембранным потенциалом V и <a href="/info/130915">регулирует величину</a> тока ] гаким образом, чтобы поддерживать V на постоянном уровне любое небольшое отклонение от заданного значения Ус <a href="/info/1815560">автоматически приводит</a> к <a href="/info/1712151">изменению величины тока</a>, благодаря чему <a href="/info/4005">мембранный потенциал</a> не отклоняется от фиксированного значения У= Ус. Для того чтобы выяснить, как изменяется <a href="/info/1488993">поведение мембранных</a> каналов с течением времени, нужно резко переключить потенциал с одного фиксированного уровня на другой и проследить за соответствующими токами с помощью осциллоскопа. <a href="/info/1545274">Измеряя величину</a> тока при <a href="/info/30656">разных концентрациях</a> Ма и в среде, можно вычислить, какая часть трансмембранного <a href="/info/350615">тока переносится</a> теми и <a href="/info/366848">другими ионами</a>, и определить вклад в этот ток N -селективных и К - селективных каналов. <a href="/info/1408373">Метод фиксации напряжения</a> может быть приспособлен для <a href="/info/442698">анализа поведения</a> <a href="/info/362978">отдельных молекул</a>, <a href="/info/488539">образующих ионные</a> каналы, <a href="/info/1597898">которые находятся</a> в маленьких участках мембраны, закрывающих отверстие микроэлектрода в этом случае методику называют методом <a href="/info/1339534">пэтч</a>-клампа .
    В катионной полимеризации такая закономерность не установлена напротив, имеется сбивающее с толку множество кинетических зависимостей, отражающих разнообразие химии этих систем. Более того, во многих системах скорость зависит от трех концентраций от концентрации мономера, катализатора и сокатализатора. Дальнейшее усложнение, не имеющее параллелей в радикальной полимеризации, состоит в том, что порядок реакции относительно мономера обычно зависит от диэлектрической проницаемости растворителя, повышаясь вплоть до третьего порядка в растворителях с низкой диэлектрической проницаемостью, например в четыреххлористом углероде. Порядок относительно катализатора может также зависеть от растворителя. Это объясняется тем, что в среде, которая сама не может обеспечить необходимой энергии сольватации, ионные пары стабилизуются наиболее полярными или поляризующимися молекулами из числа присутствующих в системе, т. е. мономером или катализатором, так что последние могут быть включены в кинетическое уравнение, хотя они не принимают непосредственного участия в реакции. Некоторые из кинетических соотношений, установленных в различных системах, суммированы Пеппером [21 и Имото [86]. Почти во всех обсуждениях кинетики явно или молчаливо предполагают, что катионную полимеризацию можно рассматривать с помощью метода стационарного состояния. В отношении многих систем это, вероятно, правомерно, но описаны и другие системы, в которых кривая реакции имеет S-образную форму [23, 87— 891, что указывает на наличие более медленной фазы, в течение которой концентрация растущих цепей может увеличиваться существуют и такие системы, в которых полимеризация прекращается раньше полного израсходования мономера, что указывает на уменьшение числа растущих цепей [23]. Последнее явление было использовано Пеппером для определения констант скорости роста и обрыва — это первое такое определение, сделанное в катионной полимеризации [16]. [c.108]

    Определение ионного произведения среды с помощью цепей без переноса [c.743]

    Если АТР-синтетаза в норме не транспортирует П из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит через эту мембрану протоны, создавая гаким образом электрохимический протонный градиент, доставляющий энергию для синтеза АТР. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды - пока весь кислород не израсходуется Во время такой вспышки дыхания с помощью чувствительного рП-электрода можно зарегистрировать внезапное подкислепие среды в результате выталкивания ионов П из матрикса митохондрий. [c.450]


    Если АТР-синтетаза в норме не транспортирует из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит протоны через эту мембрану, создавая таким образом электрохимический протонный градиент, который в свою очередь приводит в действие АТР-синтетазу. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать соответствующим ингибитором. В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды-пока весь кислород не израсходуется. Во время такой вспьппки дыхания с помощью чувствительного рН-электрода можно зарегистрировать внезапное подкисление среды в результате выталкивания ионов из матрикса митохондрий. Через одну-две минуты pH вернется к первоначальному уровню, так как протоны проходят через мембрану обратно по различным медленным каналам (рис. 9-29). [c.28]

Рис. 4.3. Определение Дф и ДрН с помощью ионселективных электродов. А. Прибор. Б. Определение буферной емкости матрикса. В. Эксперимент. Г. Ионные потоки. Митохондрии инкубируют в анаэробных условиях, среда содержит сахарозу, субстрат, валиномицин и К" " в низкой концентрации. Затем добавляют такое количество Н2О2. которое позволяет дыхательной цепи работать около 3 мин (среда содержит каталазу). При этом наблюдается выброс протонов (измеряется рН-электродом) и захват ионов К+ (измеряется К" "-селективным электродом). Распределение ионов К" " в присутствии валиномицина подчиняется уравнению Нернста. Зная объем матрикса, в котором накапливается К+, и измерив падение концентрации в среде, можно рассчитать величину градиента К+ на мембране. Чтобы рассчитать величину ДрН, необходимо знать как падение внешнего pH, так и повышение pH в матриксе, а для этого необходимо измерить его буферную емкость. Эту величину определяют в независимом эксперименте, где измеряют закисление среды после анаэробной добавки НС1. Наблюдаемое начальное закисление соответствует буферной емкости среды. Затем происходит частичное защелачивание, связанное с входом протонов в матрикс. Конечное состояние отражает суммарную буферную емкость среды и матрикса. Рис. 4.3. Определение Дф и ДрН с <a href="/info/1402806">помощью ионселективных</a> электродов. А. Прибор. Б. <a href="/info/352847">Определение буферной емкости</a> матрикса. В. Эксперимент. Г. <a href="/info/135876">Ионные потоки</a>. Митохондрии инкубируют в <a href="/info/69500">анаэробных условиях</a>, <a href="/info/500116">среда содержит</a> сахарозу, субстрат, валиномицин и К" " в <a href="/info/334174">низкой концентрации</a>. Затем добавляют такое количество Н2О2. которое позволяет <a href="/info/99457">дыхательной цепи</a> работать около 3 мин (<a href="/info/500116">среда содержит</a> каталазу). При этом наблюдается выброс протонов (измеряется рН-электродом) и <a href="/info/97004">захват ионов</a> К+ (измеряется К" "-<a href="/info/134299">селективным электродом</a>). <a href="/info/7892">Распределение ионов</a> К" " в присутствии валиномицина подчиняется <a href="/info/2598">уравнению Нернста</a>. Зная объем матрикса, в котором накапливается К+, и измерив <a href="/info/73955">падение концентрации</a> в среде, <a href="/info/1526894">можно рассчитать</a> <a href="/info/50696">величину градиента</a> К+ на мембране. Чтобы рассчитать величину ДрН, необходимо знать как падение внешнего pH, так и повышение pH в матриксе, а для этого необходимо измерить его <a href="/info/5981">буферную емкость</a>. Эту <a href="/info/1685790">величину определяют</a> в независимом эксперименте, где измеряют закисление среды после анаэробной добавки НС1. Наблюдаемое начальное закисление соответствует <a href="/info/5981">буферной емкости</a> среды. Затем происходит частичное защелачивание, связанное с входом протонов в матрикс. <a href="/info/332450">Конечное состояние</a> отражает суммарную <a href="/info/5981">буферную емкость</a> среды и матрикса.

Смотреть страницы где упоминается термин Ионное среды, определение при помощи цепей: [c.451]    [c.300]   
Электрохимия растворов издание второе (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Определение иония



© 2025 chem21.info Реклама на сайте