Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фторид лития структура кристалла

    Соединения состава MXg и MjX имеют различные координационные числа катиона и аниона. Это обстоятельство допускает большое число возможных расположений структурных единиц, но только два из этих расположений особенно распространены для ионных соединений структура флюорита aFj и структура рутила TiOa- Образованию первой структуры благоприятствует значение отношения радиусов, большее 0,732, а образованию второй —интервал значений от 0,414 до 0,732. Хотя исключения из этого правила довольно часты, оно все же в общем справедливо и структура флюорита характерна главным образом для кристаллов с небольшими фторидными анионами. Примечательно, что эта структура обнаружена у фторидов щелочноземельных металлов кальция, стронция, бария, а также кадмия, ртути и свинца. На рис. 6-64 изображена структура флюорита и отчетливо видна тетраэдрическая координация анионов. Эту структуру можно рассматривать как кубическую гранецентрированную решетку в отношении катионов, причем каждый из них, находящийся в центре грани гранецентрированной элементарной ячейки, ассоциирован с четырьмя анионами, расположенными внутри ячейки. Очевидно, дополнительно четыре аниона будут в эквивалентном положении в соседней ячейке. Таким образом, около каждого катиона имеется кубическое расположение анионов, его ближайших соседей, и они обусловливают для него координационное число 8. Антифлюоритовую структуру имеют халь-когениды лития, натрия и калия (в отличие от структуры флюорита положительные и отрицательные ионы взаимно заменены). [c.273]


    Те же самые принципы, которые справедливы для поверхности кристаллических веществ, сохраняют свое значение и для поверхности аморфных твердых тел. Кристаллы могут иметь чисто ионную структуру, как, например, НаР, или чисто ковалентную, как, например, алмаз. Однако большинство веществ находится где-то между этими двумя крайними случаями (даже в случае фторида лития путем точного определения распределения электронной плотности была показана [ ] возможность образования связи между катионом и анионом). Установлено, что в большинстве аморфных веществ преобладают ковалентные связи. Как и в жидкостях, в них обычно имеется некий ближний порядок, сходный с упорядочением в соответствующих кристаллических структурах. Очевидно, это [c.186]

    Ненасыщаемость ионной сиязи. Образование димерных молекул и кристаллов. Важнейшей особенностью ионной связи является ее ненасыщаемость. Поле, создаваемое ионом, имеет сферическую симметрию, и все находящиеся в этом поле другие ионы испытывают его действие. В результате оказывается возможным образование из двух молекул МеХ димерной молекулы Ме2Х2, как, например, в парах над кристаллами фторида лития. Молекулы димера имеют структуру плоского ромба, близкого к квадрату. Как показывает несложный расчет, образование из двух катионов и двух анионов димерной молекулы Me Xj сопровождается выделением энергии в 1,3 раза большей, чем при образовании двух молекул МеХ. Таким образом, димеризация сопровождается выигрышем энергии, и при низких температурах димерная форма молекулы устойчивее мономерной. Кроме димерных молекул в парах над галогенидами щелочных металлов могут существовать и более высокие полимерные формы, как, например, молекулы Li з F3 в парах над LiF. Подобная полимеризация является как бы промежуточным звеном от молекулы к кристаллу МеХ. [c.166]

    Третье направление использования экзоэлектронной эмиссии связано также с использованием кристаллов, в частности, кристаллов фторидов лития и натрия (Ь1Р-и, Ме и NaF-U, Ме, где Ме - Си, Zn, Т1, РЬ, 8с, 8г). Оно заключается в высокотемпературной дозиметрии ионизирующих излучений. В основу метода НК в данном случае заложено явление зависимости структуры выращиваемого кристалла от условий окружающей среды. В этом плане создаваемые на базе (Ы, Na)F-U, Ме рабочие вещества для термоэкзоэмиссион-ных детекторов с повышенными рабочими температурами могут использоваться в качестве чувствительных элементов при дозиметрии. В ряде специфических случаев (контроль радиационной обстановки сверхглубоких скважин и хранилищ радиоактивных отходов с температурой среды до 200 °С и выше) термоэкзоэмиссион-ные детекторы излучений могут оказаться наиболее предпочтительными. [c.663]


    На примере кристаллов LiF и LiH обсудим, как модель КРЭЯ позволяет исследовать особенности электронной структуры кристалла в зависимости от природы образующих его атомов при сохранении симметрии рассматриваемого объекта. Кристаллы гидрида и фторида лития имеют одинаковую ГЦК решетку, близкие межатомные расстояния (3,86 и 3,80 ат. ед. соответственно), однако как зонная структура, так и ряд свойств этих кристаллов существенно различаются. [c.225]


Смотреть страницы где упоминается термин Фторид лития структура кристалла: [c.69]    [c.60]    [c.376]    [c.599]   
Лекции по общему курсу химии (1964) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл структура

Литий фторид



© 2025 chem21.info Реклама на сайте