Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория квантовохимического резонанса

    Методом валентных связей рассчитаны порядки связей (Пенни, 1937), чему предшествовали полу эмпирические расчеты процентов двоесвязности по теории резонанса (Полинг, 1935), электронные заряды атомов и связей одновременно (Додель и А. Пюльман, 1945), индексы связи и индексы свободной валентности (Додель и сотрудники, 1946), т. е. величины, имеюш,ие набор аналогов в методе молекулярных орбиталей. Все эти квантовохимические характеристики сопоставлялись в дальнейшем с различными свойствами и параметрами молекул. [c.80]


    Вопрос (М. И. Шахпаронов). Я хотел бы спросить М. И. Батуева что все-таки, по его мнению, представляет собой теория резонанса И второй вопрос в чем заключается махизм в таком, например, квантовохимическом методе расчета, как метод молекулярных орбит или, скажем, линейный вариант вариационного метода  [c.212]

    Таким образом, вопрос о взаимоотношении между квантовой химией и химиками-экспериментаторами естественным образом перешел в методологическую плоскость и превратился в вопрос о реальности представлений квантовой химии или, но сути, в вопрос о природе ее теоретических моделей — являются ли они структурными (изоморфными оригиналу — изучаемому объекту микромира) или они функциональные, или смешанные и если последнее правильно, то в чем заключается их структурность. В чем заключается реальность квантовой химии — этот вопрос задавал и Коулсон [122, с. 172]. Ответ на этот вопрос можно, но-видимому, сформулировать так квантовая химия представляет собою совокупность моделей (см. обзор [124]) с определенной иерархией, от фундаментальных (уравнения Шредингера и правила заполнения орбиталей на основании принципа Паули) до моделей частного характера, к которым принадлежит, например, модель Хюккеля. Большинство моделей квантовой химии органических соединений смешанные, поскольку сочетание чисто квантовомеханических моделей с моделями химического строения и стереохимии придает им элемент структурности (изоморфности), хотя чисто формальное сочетание квантовохимических представлений со структурными формулами, как в модели суперпозиции валентных схем в теории резонанса, не выводит модель из разряда функциональных [125]. [c.98]

    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]


    Конспективно обсуждены и подходы, используемые в квантовой химии при изучении конденсированных систем. В настоящее время появилась даже такая ветвь квантовой химии, как квантовое материаловедение, для демонстрации которой, к сожалению, места опять-таки не было. Полностью отсутствует обсуждение вопросов, важных для понимания истории развития химической мысли, например квантовомеханических аспектов теории резонанса, а также различных электронных теорий, например теории Гиллеспи. Не затронуты многие широко используемые квантовохимические расчетные методы, в частности различные варианты метода связанных электронных пар, а также методы анализа тех составляющих, которые в своей совокупности образуют химическую связь в молекулах (независимо от их размеров), хотя, конечно, богатство идей, здесь существующих, весьма поучительно и было бы полезно любому человеку, начинающему погружаться даже в самые поверхностные слои современной теоретической химии. Вся эта красота, все богатство красок теории в существенной степени, однако, теряются при начальном представлении материала, ограниченном жесткими рамками учебного издания. [c.496]

    Проф. М. М. Шемякин. Несравненно более серьезной и опасной ошибкой является ложная интерпретация некоторых приближенных квантовохимических расчетов — так называемая теория электронного резонанса , созданная Паулингом и некритически использовавшаяся многими химиками, отчасти и мною, при истолковании некоторых экснериментальных данных. Эта концепция, утверждающая, что резонанс фиктивных, умозрительных структур есть явление, якобы имеющее место в молекуле, уже была подвергнута уничтожаюп ей критике в ряде статей и выступлений советских ученых. Концепция электронного резонанса должна быть признана идеологически и методологически порочной, а по своему физическому содержанию — несостоятельной и бесплодной, так же как и трактовка Ингольдом мезомерного эффекта . [c.99]

    Разумеется, метод наложения валентных схем, использующий различные варианты представления волновой функции электронов в молекуле, например, для СвНв — менее точный (1П.66) и более точный (111.67), является лишь математическим приемом. Истинное распределение электронной плотности в молекуле, находящейся в данном энергетическом состоянии, вполне определенное и единственное, никаких изменений в нем не происходит. Поэтому неправильно было бы считать, что бензол содержит смесь молекул, находящихся в пяти различных состояниях, или что структура молекул, определяющая свойства этого соединения, является наложением (резонансом) пяти реально существующих структур. Наложение валентных схем нельзя считать физическим явлением. Это способ квантовомеханического рассмотрения состояния электронов, движение которых не локализовано около определенной пары атомов. Данный прием используется только в методе валентных связей и не фигурирует в другой квантовохимической теории — методе молекулярных орбиталей, хоторыи мы рассмотрим в дальнейшем. [c.177]

    В развитии качественных электронных теорий органической химии, основанных на понятии ковалентной связи, можно наметить три периода. В первый период (от конца первого до начала третьего десятилетия нашего века) было выдвинуто само положение о ковалентной связи И сделаны нонытки, еще ограниченные, применить его в теории строения и свойств органических молекул. Во второй период (20-е — начало 30-х годов) была в главных чертах разработана теория электронных смещений, которая в силу своей универсальности и простоты завоевала прочную популярность у химиков-органиков. Третий период, продолжающийся до наших дней, характеризуется не столько введением новых фундаментальных идей (что стало прерогативой квантовой химии), сколько распространением теории электронных смещений на новые классы соединений и постепенной асиммиляцией ее идей квантовохимическими теориями. Такой переходной характер имеет особенно популярная в 30-е и 40-е годы теория резонанса в ее качественной форме. [c.60]

    Теплоты стабилизации или энергии резонанса, как это было принято говорить в 30-е и 40-е годы, можно было вычислить также из теплот гидрирования, из теплот сгорания, а также полуэмпириче-ским путем из энергий связей. Результаты таких расчетов можно было сопоставить с результатами, полученными квантовохимическим путем, о котором Уэланд писал В настоящее время существует несколько методов теоретического расчета энергий резонанса углеводородов. Все они настолько грубы, что более правильно считать их просто эмпирическими методами, вообще не основанными на теории но они все же вытекают из теории и могут быть согласованы с ней. Несмотря на недостаточную строгость, они дают результаты, [c.78]

    В книге К. Хигаси, X. Баба и А. Рембаума детально изложены не только методы расчета, но и использование вычисленных величин, а также других характеристик, которые можно получить из них для суждения о свойствах органических соединений. В этом отношении настоящая книга несколько отличается от книги Э. Стрейтвизера включением ряда новых вопросов (например, теории полимеризации) и более подробным рассмотрением некоторых свойств (например, данных по электронному парамагнитному резонансу). Весь этот материал представляет интерес не только для тех, кто хочет самостоятельно заниматься квантовохимическими расчетами, по и для всех химиков-органиков. [c.6]


    Предлагаемая вниманию читателя монография проф. Л. Салема представляет собой обзор существующих квантовохимических подходов к описанию путей реакщ1й органических молекул и их реакционной способности. В очень небольшой по объему книге автору удалось удивительно полно отразить применение современных квантовомеханических методов для описания химических превращений. Это достигнуто очень точным отбором наиболее характерных примеров, иллюстрирующих эти методы. Читатель поэтому не найдет в книге исчерпывающего обсуждения (или хотя бы списка) работ по каждому из рассматриваемых методов такая цель не преследовалась автором. Нам кажется, что проф. Л. Салем хотел показать, каково в наще время соотношение между различными теоретическими подходами к описанию химических реакций, какие из них более перспективны, какие более просты и удобны, какие более наглядны и не требуют сложных математических вычислений. К достоинствам изложения следует отнести то, что автор всегда обращает внимание читателя на альтернативные идеи и методы, а не ограничивается теми из них, которые, может быть, ему нравятся больше. Изложение альтернативных подходов всегда чрезвычайно полезно, поскольку таким образом удается вскрь1ть разные стороны одного и того же явления. Поэтому в книге обсуждаются как теория резонанса, так и метод молекулярных орбиталей, как симметрия молекулярных орбиталей, так и симметрия электронных состояний, как континуумная, так и дискретномолекулярная модель влияния растворителя и т. д. Наряду с так называемыми точными методами уделяется внимание также и корреляциям (например, Гамме-та, Бренстеда), постулатам (принципам) (например, Хэммонда, Кертина — Гаммета и т. п.), поскольку эти корреляции и постулаты в настоящее время играют существенную и исключительно полезную роль при теоретическом анализе связи структуры молекул с их реакционной способностью. [c.5]

    Автор отмежевывается от таких типичных квантовохимических концепций, как резонанс , делокализовапные и локализованные электроны и т. д. Подробные представления не являются составной частью какой-либо последовательной теории и в настоящей книге рассматриваться не будут  [c.141]


Смотреть страницы где упоминается термин Теория квантовохимического резонанса: [c.69]    [c.69]   
Структуры неорганических веществ (1950) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс квантовохимический



© 2024 chem21.info Реклама на сайте