Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа Прогреваемый насос ЭСН-1 и получение сверхвысокого вакуума

    Быстрота откачки насоса СИН-5-4 неодинакова для различных газов по водороду 5000 л/сек, по аргону только 35 л/сек. Величина быстроты откачки инертных газов зависит от плотности и равномерности напыления слоя титана, который замуровывает атомы инертных газов. Предельный вакуум, создаваемый насосом СИН-5-4, зависит от предварительной подготовки насоса к работе температуры и времени прогрева всей установки, включая насос. Для получения сверхвысокого вакуума необходим прогрев всей установки до температуры не менее 400° С, поэтому применение резины и других органических уплотнителей в насосе исключено. При прогреве насоса необходимо следить за давлением в системе, которое не должно превышать 5-10 тор. Включать ионизатор можно только при давлении ниже 5-10 тор, в противном случае он выйдет из строя. Для нормального запуска в работу насоса СИН-5-4 необходимо иметь в нем предварительное разрежение порядка 10 тор, которое создается высоковакуумным агрегатом ВА-05-1. Более предпочтительно применять ртутные агрегаты. [c.200]


    Для получения сверхвысокого вакуума необходимо эти насосы и откачиваемые объемы прогреть до температуры 400—450° С с одновременной откачкой насосом предварительного разрежения. Во время прогрева необходимо вести контроль за давлением, которое не должно превышать 5-10 2 тор. После прекращения прогрева и достижения разрежения —iQ-з тор подается напряжение на электроды насоса. В первый момент происходит увеличение давления за счет десорбции газа с деталей насоса под действием разряда, и через электроды протекает большой разрядный ток. Если после включения магниторазрядного насоса высокая степень разрежения (10- —10 тор) не достигается, необходимо проверить систему на герметичность и устранить возможное натекание в местах соединений. Вторая причина плохой работы насосов — недостаточное обезгаживание насоса и вакуумной системы. [c.201]

    Большим достоинством криогенных насосов является то, что для получения с их помощью сверхвысокого вакуума нет необходимости длительного прогрева рабочего объема установки. Конструкции насосов достаточно просты, и основной проблемой их эксплуатации является получение, использование и утилизация низкотемпературных хладагентов. При этом энергетические затраты, необходимые для получения хладагентов, сопоставимы с затратами при работе паромасляных агрегатов, обеспечивающих ту же самую скорость откачки. Недостатком криогенных насосов является то, что они не откачивают те газы, которые не конденсируются или не адсорбируются охлажденными поверхностями. Так, например, если в качестве хладагента использовать жидкий водород, то насос будет откачивать гелий и водород. Если необходима откачка этих газов, то, помимо криогенного насоса, к рабочему объему установки может быть подсоединен насос другого типа (например, паромасляный или титановый насос с небольшой быстротой действия). Для удаления водорода во многих случаях достаточно эпизодическое напыление титана на поверхность, охлаждаемую жидким азотом  [c.133]

    После предварительной откачки установки насосами производится обезгаживание стеклянных деталей путем их длительного прогрева в течение нескольких часов в условиях непрерывной откачки. После этого производится обезгаживание внутренних частей ионизационных манометров путем интенсивной электронной бомбардировки при положительном потенциале коллектора ионов. Затем перекрывают металлический вентиль, отсоединяя тем самым откачиваемый объем от паромасляного насоса, после чего откачка объема производится за счет работы конизационно-го манометра. Помимо ионизационного манометра с горячим катодом для получения сверхвысокого вакуума иногда используют также откачивающее действие магнитного электроразрядного манометра специальной конструкции. [c.51]


    В работе В. Ф. Рыбалко и др. описан металлический диффузионный ртутный насос для получения сверхвысокого вакуума со скоростью откачки —50 л/сек (рис. 5.3). Откачной агрегат, кроме описываемого насоса, состоит из парортутного насоса ДРН-50 и адсорбционного угольного насоса, используемого для создания форвакуумного разряжения. Питание ртутным паром сопел 13 и 14 происходит раздельно, с помощью независимых паропроводов. Это предотвращает циркуляцию газа вместе с ртутным паром и позволяет проводить обезгаживапие ртути внутри насоса. Вакуумные детали насоса и ловушки, заполненной жидким азотом, выполнены из нержавеющей стали марки 1Х18Н9Т. Для работы насоса требуется 200 мл очищенной ртути. При обезгаживании ловушку прогревают с помощью электропечи, одеваемой на корпус 5. По данным авторов для получения сверхвысокого вакуума длительное обезгажи-вание в течение 45—50 ч необходимо проводить после большого перерыва в работе или после переборки насоса и очистки его деталей органическими растворителями. При ежедневной работе в одну смену вакуум более чем 10 мм рт. ст. достигается после 3—4 ч откачки и не ухудшается в течение 30 ч дальнейшие испытания авторы не проводили. [c.151]


Смотреть страницы где упоминается термин Работа Прогреваемый насос ЭСН-1 и получение сверхвысокого вакуума: [c.151]   
Смотреть главы в:

Учебная лаборатория вакуумной техники -> Работа Прогреваемый насос ЭСН-1 и получение сверхвысокого вакуума




ПОИСК





Смотрите так же термины и статьи:

Прогреваемый насос ЭСН

Работа насоса

Работа насоса насосов

Работа под вакуумом



© 2025 chem21.info Реклама на сайте