Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Преобразовании в соме

    Масс-анализатор ИЦР, называемый также масс-спектрометр с преобразованием Фурье (МС-ПФ), в последнее время находит все большее применение для аналитических целей [16, 22, 60]. Основным элементом спектрометра ИЦР (с наличием или без Ф)фье-приставки) является прямоугольная шестиэлектродная ячейка со стороной, равной нескольким сантиметрам, внутри которой создается высокий вакуум и сильное магнитное поле (рис. 7.14). В ней производится ионизация исследуемых молекул импульсным пучком электронов (в течение 1-5 мс) или другим методом. Образовавшиеся ионы движутся в магнитном поле по циклическим траекториям с так называемой циклотронной частотой со , определяемой указанным соотношением (7.13). Ионы удерживаются в ячейке с помощью потенциальной ямы, образованной наложением положительного напряжения 1,0 В) на боковые пластины и отрицательного напряжения (== -0,5 В) на верхнюю, нижнюю и две торцевые пластины. Разделение по массам достигается в результате подачи переменного радиочастотного поля с частотой оз на верхнюю и нижнюю пластины. Если частота электрического поля совпадает с циклотронной частотой (со/ = сом), то ионы будут поглощать энергию и их скорость и радиус траектории увеличатся. Все ионы с отношением М е будут циркулировать в фазе с радиочастотным возбуждением. Энергию, поглощаемую ионами в резонансе, измеряют с помощью специальной схемы. Однако схема работает только при частоте выше 75 кГц, что ограничивает анализ ионов с большими массовыми числами. [c.858]


    Преобразования в соме. Воздействия на сому клетки могут поступать как через находящиеся на ней синапсы (соматические), так и через дендриты ). [c.20]

    В разд. 7.1 и 7.2 первичные и вторичные свободные радикалы рассматривались в качестве микрозондов, которые характеризуют местонахождение и молекулярное окружение разрывов цепей. Как показано в гл. 6, первичные механорадикалы всегда расположены на концах цепи и большей частью нестабильны. Эти радикалы будут передавать свободные электроны со скоростью, зависящей от температуры, и таким образом превращаться во вторичные радикалы. Данная реакция, а также последующие реакции преобразования и спада числа радикалов, включая их рекомбинацию, представляют интерес для объяснения процесса разрушения в двух отношениях. Во-первых, эти реакции усложняют определение концентрации и молекулярного окружения исходных мест разрыва цепи. Во-вторых, они изменяют физические свойства других переплетающихся цепей путем внедрения в последние неспаренных электронов и образования сшивок. Для рассмотрения спектроскопических особенностей, стабильности и конформации свободных радикалов рекомендуем обратиться к исчерпывающей монографии Рэнби и Рабека [37] и к обзорным статьям Кэмпбелла [38], а также Сома и др. [39]. [c.220]

    Попятно, что ira каждом уровне дробления решающим могут оказаться данные разных разделов биологии или (и) психологии. Например, для построения феноменологических моделей сенсорных систем основу представляли сведения из психофизики. Для более подробных моделей, включающих представления о характере iij)e-образований в составляющих систему нейронных ядрах, необходимы результаты электрофизиологических исследований этих ядер. Но чтобы приблизиться к пониманию механиз.мов передачи и переработки информации — носителями которой являются потоки нервных импульсов,— требуются модельные представления на нейронном уровне, т. е. на уровне иггформационных преобразований Б нервных клетках и организации взаимодействия между ними. Наиболее детальная. модель предполагает понимание по крайней мере характера н])еобразований в тех элементах нейрона, которые по сои-ременпым воззрения.м определяют переработку информации,— это мембрана клетки, сома, дендриты, синапсы. Здесь уже нужны данные не только физиологии и морфологии нервной клетки, но и результаты моделирования но существу молекулярных процессов в мембране. Примечательно, что здесь начинается и разделение сфер исследования. Для тех кто моделирует информационную сторону процессов в нервной системе, приближается момент, когда достаточно ограничиться феноменологическими сведениями о более мелких элементах (посчитать их за черные ящики ). Вместе с тем здесь начинается сфера интересов биохимии и молекулярной биологии, данные которых как бы поддерживают снизу весь этот комплекс информационных исследований нервных процессов, помогая установить свойство наиболее ма.чых элементов, влияющих на специфику оперативной переработки нервной информации. [c.10]


    Электрофизиологические и модельные исследования процессов в соме нейрона дают основание выделяхь две стадии информационного процесса в нейроне 1) преобразование входных импульсных последовательностей через синаптические контакты в параметр р — краткое обозначение постсинаптического потенциала ПСП или поляризации сомы и 2) преобразование параметра р в последовательность выходных импульсов Р нейрона [4, 71]. По экспериментальным данным вторая стадия преобразования для ряда лейрояов [28] имеет значительный участок, близкий к линейному. Это послужило основанием рассматривать в моделях зависимость Р р) как линейную [c.44]


Смотреть главы в:

Элементы теории биологических анализаторов -> Преобразовании в соме




ПОИСК





Смотрите так же термины и статьи:

Преобразование



© 2025 chem21.info Реклама на сайте