Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетический материал в онтогенезе

    Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы. [c.143]


    Методы генетической трансформации позволяют не только вводить новый генетический материал в культурные растения, но также идентифицировать и изучать последовательности нуклеотидов, контролирующие экспрессию генов. При разработке любого проекта по генетической инженерии для получения контролируемой экспрессии в нужных тканях на соответствующей стадии жизненного цикла следует обращать самое серьезное внимание па манипуляции с изучаемыми генами. Выделение генов, обладающих высоким уровнем экспрессии в определенных органах различных растений на известной стадии жизненного цикла, значительно облегчает идентификацию промоторов, специфически активных в этих тканях и органах, а также позволяет проводить фундаментальные исследования экспрессии генов в онтогенезе. Таким образом, определены и используются в настоящее время для получения трансгенных растений нуклеотидные последовательности, которые усиливают или подавляют экспрессию генов в зависимости от воздействий окружающей среды (например, света или стресса). В данной главе описываются некоторые основные свойства генов растений, и, кроме того, изложены некоторые подходы к изучению организаций перенесенных генов методом блоттинг-гибридизации по Саузерну (разд. 6.2) и экспрессии генов в трансгенных растениях. [c.304]

    Принято выделять также онтогенетическую изменчивость. (Подробнее о ней см. в гл. 17.) Здесь только отметим, что онтогенетическая изменчивость — это реализация нормы реакции организма во времени, в ходе его индивидуального развития. По этому критерию она относится к ненаследственной изменчивости. Существует, однако, ряд фактов, несомненно указывающих и на изменения самого генетического материала в ходе онтогенеза, что приближает онтогенетическую изменчивость к наследственной. Вот почему на схеме рис. 12.1 онтогенетическая изменчивость перекрывается наследственной и ненаследственной изменчивостью. [c.291]

    Генетический материал в онтогенезе [c.409]

    Проблема стабильности генетического материала в онтогенезе [c.409]

    Экспериментальный подход к решению дилеммы дифференциальная активность генов или изменение состава генетического материала в онтогенезе наметился в 60-х годах. [c.412]

    Таким образом, эти эксперименты показали, что дифференцировка клеток в онтогенезе не обязательно сопровождается необратимой инактивацией генетического материала ядра, а проблема генетического контроля индивидуального развития тесно связана с проблемой дифференциальной экспрессии генов. [c.412]


    Еще один пример перестройки генетического материала в онтогенезе — дифференцировка лимфоцитов при развитии системы иммунитета у позвоночных животных и человека. [c.433]

    Мейоз — это особый тип клеточного деления, возникший с появлением полового размножения, при котором два родителя — отец и мать — дают начало новому организму. В процессе оплодотворения сливаются гаплоидные ядра половых клеток родителей, что вдвое увеличивает количество хромосом в зиготе. Следовательно, при образовании половых клеток должно в два раза уменьшаться количество хромосом, но таким образом, чтобы совокупность генетического материала обеспечивала преемственность поколений. Закономерное чередование репликации ДНК (а соответственно и хромосом), митозов и мейозов обеспечивает сохранение видоспецифического кариотипа как в индивидуальном развитии - онтогенезе, так и в череде поколений организмов. [c.82]

    Преобладающее большинство бактерий имеет замкнутую генетическую систему. Кроме того, в онтогенезе бактерий нет диплоидной фазы. Иначе говоря, формы изменчивости бактерий, связанные со скрещиванием наследственного материала, у преобладающего большинства гетеротрофных бактерий отсутствуют. Исключение составляет кишечная палочка, у которой известна копуляция или парасексуальный процесс, ведущий к необычному скрещиванию с рекомбинацией генетического материала — меромиксису. Следовательно, все рассуждения об изменчивости бактерий относятся к организмам, пребывающим в гаплоидной фазе. Им присуща адаптивная изменчивость — физиолого-биохимические модификации и мутационная измен- [c.101]

    Представляет ли онтогенетическая изменчивость результат дифференциального действия генов, т. е. развертывания генетической программы зиготы в пределах нормы реакции, заданной генотипом, или генетический материал изменяется в онтогенезе Содержат ли все соматические клетки одинаковый или различающийся набор генов Собственно так был поставлен этот вопрос еще в конце прошлого века. В 1883 г. В. Ру, один из создателей ядерной гипотезы наследственности, предположил, что ядра, возникающие при дроблении зиготы, разнокачественны. Однако в 1892 г. Г. Дриш показал, что перемещение ядер между клетками эктодермы и мезодермы дробящегося зародыша не нарушает его нормального развития. Зачаток регенерирующего хвоста тритона может быть пересажен в область конечности и превратится в ногу, а не в хвост. Следовательно, дробление и последующая дифференцировка не сопровождаются утерей или необратимыми изменениями ядерного материала. [c.409]

    Один из немногих (если не единственный) примеров детерминации, механизм которой исследован достаточно подробно, касается определения клеточного типа (типа спаривания) у дрожжей Sa h. erevisiae. Это один из примеров, доказываюхций возможность перестройки генетического материала в онтогенезе. [c.431]

    В итоге дискуссий и экспериментов в области проблемы наследования приобретенных признаков в начале XX в. была сформулирована точка зрения, своего рода закон ненаследования изменений, приобретенных в ходе онтогенеза. В наше время этот закон нашел подтверждение в виде центральной догмы молекулярной биологии (см. гл. 15), согласно которой перенос информации возможен только от генетического материала (нуклеиновых кислот) к белкам — генным продуктам, но не в обратном направлении. [c.440]

    Каковы же причины генетической нестабильности культивируемых клеток Таких причин несколько. Прежде всего — это генетическая неоднородность исходного материала (гетерогенность экспланта). У многих растений дифференцированные ткани характеризуются наличием клеток разной плоидности и лишь активно пролиферирующие в течение онтогенеза ткани, такие, как верхушечные меристемы, камбий и другие, остаются всегда диплоидными. Другой причиной может быть длительное пассирование тканевых и клеточных культур, приводящее к накоплению в них генетических изменений, в том числе к неравномерному изменению плоидности. Нарушение коррелятивных связей при изолировании участков тканей растений и помещении их на питательную среду также приводит к генетической нестабильности клеток. Подобные результаты могут быть связаны и с влиянием на генетический аппарат клетки входящих в состав питательных сред фитогормонов. В качестве гормонов в питательные среды для каллусообразования обязательно входят ауксины и цитокинины. О мутагенном действии этих веществ известно из целого ряда работ. Наиболее активным мутагенным препаратом является 2,4-Д, входящий в состав большинства питательных сред. Цитокинины, в частности кинетин, способствуют полиплоидизации клеток. [c.89]

    Физиология растений как самостоятельная наука возникла иа рубеже XVIII и XIX столетий, Она имеет долгую историю, богатую открытиями и событиями. Если возникновение физиологии растений как науки о жизненных процессах растений отнести ко времени открытия Дж. Пристли фотосинтеза в 1771 г., ее возраст превышает 200 лет. Формальной датой зарождения физиологии растений считают 1800 г., когда был издан пятитомный труд швейцарского ботаника Ж. Сенебье (1742—1809) Физиология растений . Он дал и название этой науке. За указанный период в физиологии растений произошли важнейшие открытия фотосинтеза и дыхания как основных преобразователей материи и энергии, способности бобовых и некоторых других видов к симбиозу с азотфиксирующими организмами, роли водного баланса растений и адаптации их к экстремальным почвенно-климатическим условиям, фотопериодизма — явления, обусловливающего переход растений от вегетативного развития к репродуктивному в зависимости от относительной продолжительности дня и ночи, эндогенных регуляторов— фитогормонов, являющихся медиаторами между генетической программой и ее реализацией в онтогенезе вида, реституции у растительных клеток, т. е, способности восстанавливать из отдельных свободноживущих вегетативных клеток целые растения, и др. [c.8]


    Как известно, одним из основных правил наследования признаков является правило эквивалентности реципрокных скрещиваний, т.е. равнозначной фун-кции аллеля, полученного от отца или от матери. Однако, как показали подробные исследования, это правило может не соблюдаться. Функции генов взаимосвязаны и могут изменяться вплоть до дифференциального выключения одного из аллелей на протяжении всего онтогенеза. Такие случаи наследования объясняют генетическим импринтингом. [c.26]


Смотреть страницы где упоминается термин Генетический материал в онтогенезе: [c.435]    [c.437]    [c.4]    [c.72]   
Смотреть главы в:

Генетика с основами селекции -> Генетический материал в онтогенезе




ПОИСК







© 2025 chem21.info Реклама на сайте