Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы оценки сопротивления хрупкому разрушению

    Гуляев А. П., Никитин В. Н. Сравнение различных методов оценки сопротивления сталей хрупкому разрушению.— Заводская лаборатория , 1965, т. XXXI, № I, с. 88-94. [c.187]

    Нами изложены лишь некоторые подходы к оценке сопротивления материалов хрупкому разрушению, основанные на испытаниях на вязкость разрушения. Именно в этом направлении следует ожидать решения многих важных задач прогнозирования поведения материалов в конструкциях в условиях низких температур, а также создания расчетных методов предотвращения хрупких разрушений деталей машин и сварных соединений. [c.34]


    Каназава Т., Мачида С., Момота С., Нагивара И. Изучение возникновения хрупкого разрушения с позиций представления о раскрытии трещины / Новые методы оценки сопротивления металлов хрупкому разрущению. М. Мир. 1972. С. 90-106. [c.554]

    Хан Т., Саррат Н. и др. Критерии распространения трещин в цилиндрических сосудах давления//Новые методы оценки сопротивления металлов хрупкому разрушению. М. Мир. 1972. С. 272-300. [c.242]

    Прочность. Большинство испытаний по оценке характеристик хрупкого разрушения было проведено на -образцах, изготовленных из малоуглеродистых сталей с уровнем предела текучести Оу = 23—31 кгс/мм . Расширяющееся применение для сосудов давления низколегированных сталей приводит к возрастанию уровня допускаемых мембранных напряжений, что связано с увеличением возможности хрупкого разрушения и с необходимостью пересмотра применявшихся ранее расчетных методов. При контроле качества металла используются регламентированные минимально допустимые значения ударной вязкости при испытаниях по Шарпи образцов с У-образным надрезом. Так как часть полной поглощаемой энергии затрачивается на пластическую деформацию, то при эквивалентном сопротивлении хрупкому разру- [c.173]

    Сопротивление перлитных сталей хрупкому разрушению существенно зависит от размера и сечения детали. Поэтому в образцах небольшого размера, предназначенных для качественного контроля и весьма удобных для лабораторных методов испытания, трудно воспроизвести условия нагружения, соответствующие условиям хрупкого разрушения при эксплуатации. Одним из ранних, наиболее разработанных в этом направлении был метод ударных испытаний надрезанных образцов на изгиб, в которых малые размеры образца компенсировались применением надреза и высокой скорости деформирования [8, 9]. В настоящее время для контрольных испытаний по оценке качества сталей перлитного класса наиболее широкое распространение получили образцы Шарпи с острым У-образным надрезом (рис. 4.2) [10, 11]. Испытания на ударную вязкость в интервале температур обнаруживают переход от высоких к низким значениям работы разрушения образца (рис. 4.3, а). Принято переходную температуру материала определять как температуру, при которой для разрушения образца требуется минимальная энергия, например 2,1, 2,8 или4,2кгс-м. Установлено также, что у углеродистых сталей при переходе от вязкого разрушения к хрупкому наблюдается закономерное изменение внешнего вида излома образцов от волокнистого до кристаллического. Процент кристалличности или волокнистости в изломе, взятый по диаграмме рис. 4.3, б, использовался как критерий при альтернативном определении переходной температуры. При решении многих конструкторских задач требуется тем или другим способом находить переходную температуру стали для прямого или косвенного определения минимальной рабочей температуры, до которой выбранная сталь может быть применена без опасности хрупкого разрушения. Наиболее распространено определение минимальной работы разрушения образца при заданной температуре, что служит одним из условий спецификации на поставку стали. [c.145]


    Построение диаграмм их изменения в зависимости от амплитуды напряжений п числа циклов дает возможность оценить предел выносливости на одном образце. Применимость таких ускоренных оценок зависит от типа материала (папр., саморазогрев не характерен для алю.миния сплавов и нек-рых аустенитных сталей) и требует эксперимент, обоснования. Чтобы оценить сопротивление материалов распространению усталостных трещин при циклических испытаниях, измеряют протяженность и глубину трещины средствами дефектоскопии (или иснользуя следящие приборы) и строят кривые, отражающие зависимость скорости роста трещины от числа циклов. Усталостные разрушения зарождаются в области структурных несовершенств (распределяющихся обычно случайным образом), вследствие чего характеристикам У. м. (числам циклов, разруша-ющим напряжениям)свойственно рассеяние, подчиняющееся вероятностным закономерностям. Испытания на У. м. проводят на машинах, создающих циклическое нагружение в широком диапазоне частот, напряженных состояний, температур и сред. См. также Акустическая усталость. Лит. Давиденков Н. Н. Усталость металлов. К., 1949 Писаренко Г. С. [и др.]. Прочность материалов при высоких температурах. К,, 1966 Серен-с е н С, В., Г а р ф М. Э., К у з ь м е и -ко В. А. Динамика машин для испытаний на усталость. М., 1967 Трощенко В. Т. Усталость и неупругость металлов. К., 1971 Труфяков В. И. Усталость сварных соединений. К., 1973 Трощенко В. Т. [и др.]. Методы исследования сопротивления металлов деформированию и разрушению при циклическом нагружении, К., 1974 Фридман Я. Б. Механические свойства металлов, ч, 2. М., 1974 Иванова В. С., Терентьев В. Ф. Природа усталости металлов. М., 1975 С е р е н с е н С. В. Сопротивление материалов усталостному и хрупкому разрушению. М., 1975 М э н с о н С. Температурные напряжения и малоцикловая усталость. Пер. с англ. М.. 1974. [c.631]


Библиография для Методы оценки сопротивления хрупкому разрушению: [c.199]    [c.414]    [c.827]    [c.238]   
Смотреть страницы где упоминается термин Методы оценки сопротивления хрупкому разрушению: [c.688]    [c.114]   
Смотреть главы в:

Неразрушающий контроль и безопасность эксплуатации сосудов и трубопроводов давления -> Методы оценки сопротивления хрупкому разрушению




ПОИСК





Смотрите так же термины и статьи:

Метод разрушения

Методы оценки

Хрупкое разрушение



© 2025 chem21.info Реклама на сайте