Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь аустенитные

    Модуль упругости. Расчетное значение модуля продольной упругости для углеродистых и легированных сталей аустенитного класса в зависимости от температуры приведено в табл. 4.4. [c.155]

    При раскрое листов должен соблюдаться ряд требований. Расположение сварных продольных и поперечных швов в обечайках и трубах, а также швов приварки днищ, штуцеров, люков и т. д. должно позволять проведение визуального осмотра швов, контроля их качества и устранения дефектов. В конструкции аппарата допускается не более одного шва (замыкающего), доступного визуальному контролю только с одной стороны. Сварные швы, как правило, не должны перекрываться опорами, кроме отдельных случаев перекрытия опорами кольцевых (поперечных) швов горизонтально устанавливаемых аппаратов при условии, что перекрываемые участки шва по всей длине проверены дефектоскопическим методом (рентгенографическим или ультразвуковым). Методы разметки заготовок деталей из стали аустенитного класса [c.18]


    Многие сплавы подвергают испытаниям на межкристаллитную коррозию. Особенно часто определяют склонность к межкристаллитной коррозии коррозионностойких (нержавеюш,их) сталей аустенитного, аустенито-мартенситного и аустенито-ферритного классов. ГОСТ 6032—58 предусматривает методы таких испытаний проката, поковок, труб, проволоки, литья, сварных швов и сварных изделий, изготовленных из целого ряда сталей этих классов, а также двухслойных сталей и биметаллических труб с плакирующим или основным слоем из этих марок сталей. [c.451]

    Раздача полых деталей при криогенных температурах. Одним из видов формовки растяжением является процесс раздачи полых деталей при криогенных температурах, применяемый для изготовления емкостей для транспортировки жидких газов и других деталей из нержавеющей стали аустенитного класса. Технологический процесс состоит в следующем. [c.97]

    Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного класса [c.441]

    Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного и аустенито-ферритного класса [c.442]

    Для аппаратов, изготовляемых нз сталей аустенитного класса, допускается более низкая рабочая температура, при которой > 0,3 ИДж/м.  [c.7]

    Методы разметки заготовки деталей из сталей аустенитного класса не должны допускать повреждения рабочей поверхности деталей. [c.18]

    Пределы применения фланцев приварных встык исполнений 5—12 (см. рис. 13.4, д—м) и исполнения 2 (рис. 13.5, в, г) при сварке с обечайкой или днищем из двухслойной стали устанавливаются применительно к материалу основного слоя. При сварке с обечайкой или днищем из сталей аустенитного класса пределы применения устанавливаются специальным расчетом на прочность, согласованным с головной организацией отрасли. [c.211]

    Для фланцев из сталей аустенитного класса от —70 "С. [c.245]

    Сварка трубопроводов из хромоникелевых нержавеющих сталей аустенитного класса [c.357]

    Применение стойких сталей. Аустенитные стали с повышенным содержанием никеля проявляют наименьшую склонность к коррозионному растрескиванию. В хлоридных средах весьма эффективна замена хромоникелевой стали сплавами никеля, в частности инконелем. Иногда выгодно (как и в случае точечной коррозии) в растворах хлоридов вместо высоколегированных хромоникелевых сталей применять обычные углеродистые стали, не склонные к коррозионному растрескиванию в этих средах, несмотря на повышенную, но гораздо менее опасную равномерную коррозию. Почти все чистые металлы нечувствительны к коррозионному растрескиванию. Сплавы высокой чистоты, получаемые вакуумной плавкой, обнаруживают особенно высокое сопротивление этому виду коррозии. [c.453]


    Литье подразделяют на слитки, предназначенные для дальнейшей обработки давлением, и отливки. Ультразвуковой контроль обнаруживает раковины, поры, инородные включения, заливины, неслитины, плены (см. кн. 1 данной серии). Отливки из сталей перлитного класса, прошедшие термообработку типа нормализации, а также из сплавов алюминия, титана имеют мелкозернистую структуру с достаточно малым рассеянием ультразвука. Отливки из сталей аустенитного класса имеют крупнозернистую структуру, измельчить которую термообработкой нельзя. Такой материал не удается контролировать ультразвуком. [c.202]

    Стали аустенитного класса (основа — железо-у) сохраняют достаточную пластичность и приемлемую вязкость вплоть До температур жидкого гелия (—270 °С) и, следовательно, являются важнейшими конструкционными материалами для изготовления узлов оборудования, работающих при самых низких температурах (ниже —200°С) [119, 139]. [c.136]

    Швы из углеродистой стали при низких температурах обладают небольшой ударной вязкостью. Для того чтобы сделать шов более прочным, наплавку производят из аустенитной стали. Аустенитный шов сохраняет достаточную вязкость при низких температурах. [c.144]

    Для изготовления труб печей пиролиза применяется жаропрочная хромоникелевая сталь аустенитного класса марки 20Х23Н18. Рекомендуемая рабочая температура 1000 °С, температура интенсивного окисления 1050 X [22]. [c.230]

    При этом следует иметь в виду, что прочностные свойства всех металлов и сплавов, как правило, с возрастанием температуры понижаются, а с уменьщением - повышаются. Однако у углеродистых, конструкционных и легированных сталей с понижением температуры сильно снижается и ударная вязкость, что делает невозможным применение при низких температурах этих сталей из-за их хрупкости. Ударная вязкость почти не снижается при низких температурах у высоколегированных сталей аустенитного класса и цветных металлов и сплавов. [c.35]

    Соединения стали аустенитно-мартенситного класса целесообразно выполнять аргоно-дуговой сваркой без присадки (тонколистовые детали) либо с присадкой с перечисленными ниже материалами, а также кон-гактной точечной и роликовой сваркой и электронно-лучевой сваркой. [c.261]

    Минимальное значете ударной вязкости металла шва при температуре испытания 20 °С должно быть 5 кгс-м/см для всех сталей, кроме аустенитного класса и 7 кгс-м/см для сталей аустенитного класса Нормы, установленные ТУ на изготовление изделия [c.132]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Одним из наиболее распространенн1Мх растворов для испытания на склонность нержавеющих сталей к межкристаллитной коррозии является раствор серпой кислоты н медного купороса, в котором образцы кипятят. Склонность к межкристаллитной коррозии обнаруживается по растрескиванию образцов (после кипячения) при их загибе на угол, равный 90°. Опыт показывает, что этот метод пригоден для выявления склонности к мел<крн-сталлитной коррозии хромистых, ферритны.х, ] артенситных и хромоникелевых сталей аустенитного, аустенито-ферритного и аустенито-мартенситного классов, так как этот раствор выявляет межкристаллитную коррозию при выпадении карбидной фазы. Этот раствор не выявляет межкристаллитную коррозию в том случае, когда межкристаллитная коррозия является следствием выделения ст-фазы. В последнем случае значительно лучше выявляет межкристаллитную коррозию, связанную с выпадением ст-фазы, кипящий 65%-ный раствор азотной кислоты. Оценка склонности металла к межкристаллитной коррозии в этом растворе производится массовым методом, чем он прщщи- [c.344]


    Нержавеющие стали в морской воде прн достаточно сильной аэрации обладают высокой стойкостью к общей коррозии, о.лнако склонны к сильной местной коррозии, особенно в застойных зонах, ограничивающих аэрацию. Различные марки нержавеющих сталей довольно сильно различаются по скорости развития местной коррозии. Наиболее устойчивы хромоникелевые стали аустенитного класса, допо.лнительно легированные молибденом, а наиболее подвержены местной коррозии простые хромистые стали. В спокойной морской воде нержавеющие стали, не легированные молибденом, не имеют преимуществ перед углеродистыми сталями по склонности к местной коррозии. Однако в быстродвижущей-ся морской воде местная коррозия углеродистой стали будет возрастать а коррозия нержавеющей стали — значительно снижаться. Так, максимальная скорость образования питтинга на стали марки 1X18Н9 в спокойной морской воде была около 1,85 мм/год, в то время как при скорости движения морской воды 1,2—1,5 м/с развитие местной коррозии снижалось до 0,09 -0,1 мм/год. [c.19]

    Коррозионностойкое легирование и термообработку используют в основном тогда, когда металл конструкции не позволяет применять другие меры защиты. Термообработка способствует предотвращению выпадени карбидов хрома по границам зерен нержавеющей стали аустенитного класса, гомоге-пизацип структуры металла, снятию внутренних напряжений. [c.461]

    Стали аустенитно-мартенситного класса относятся к высокопрочным дисперсионно-твердеющим сталям. Упрочнение этих сталей достигается в результате мартенситного превращения обработкой при низких температурах или холодной деформацией с последующим старением при температурах 350—550°С, когда происходит выделение избыточных фаз. Коррозионная стойкость сталей этого класса несколько ниже стали 1Х18Н9Т, однако выше, чем у стали 2X13, при одинаковых механических свойствах. [c.42]

    ЛОСЬ до 3 мин. Разрушение образцов, как правило, происходило по поверхностным дефектам в виде мелких рисок (образцы шлифовали по 8 классу чистоты) без заметных макропластических деформаций с характерным для коррозионного растрескивания изломом. Образцы из стали 12Х18Н10Т испытывали в растворе 7-н серной кислоты. Результаты испытаний свидетельствуют о проявлении МХЭ и для сталей аустенитного класса. [c.125]

    Данные таблицы 3.1 свидетельствуют о том, что в качестве основного коррозионно-стойкого материала хфименяются стали аустенитного класса, преимущественно стали типа 12Х18Н10Т. [c.37]

    Прежде чем приступить к анализу, следует отметить еще раз, что сталь 20Х23Н18 - типичная сталь аустенитного класса с высокой химической стойкостью при повышенных температурах. После стандартной термообработки сталь имеет характерную однофазную структуру с размером аустенитных зерен 40 - 60 мкм. [c.312]

    При контроле электромагнитными методами ферромагнитных материалов задача состоит в том, чтобы на основе анализа электрических и магнитных характеристик проверяемого изделия определить химический состав, прочность, твердость металла, глубину цементированного и азотированного слоев, количества углерода в слое, степень наклепа, остаточные или действующие напряжения, содержание ферритной фазы (а-фазы) в сварных швах сталей аустенитного и ферритно-аустенитного классов, сортировать стали по маркам и осуществлять контроль качества термической и химико-термической обработки и т. д. Наиболее струтоурно-чувствительными магнитными параметрами металлов являются коэрцитивная сила, остаточная индукция и магнитная проницаемость [22]. [c.100]


Смотреть страницы где упоминается термин Сталь аустенитные: [c.113]    [c.99]    [c.99]    [c.31]    [c.37]    [c.45]    [c.55]    [c.65]    [c.244]    [c.357]    [c.241]    [c.372]    [c.490]    [c.149]    [c.42]    [c.38]    [c.42]   
Общая химия 1982 (1982) -- [ c.686 ]

Общая химия 1986 (1986) -- [ c.665 ]

Общая химия Издание 18 (1976) -- [ c.678 ]

Общая химия Издание 22 (1982) -- [ c.686 ]




ПОИСК







© 2025 chem21.info Реклама на сайте