Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хрупкое разрушение, условия

    Для понимания механизма влияния адсорбционно-активных металлических расплавов на механические свойства твердых металлов недостаточно сравнить результаты растяжения монокристаллов на воздухе и в присутствии расплава. Разрыву чистого монокристалла предшествует очень большая пластическая деформация образца, поэтому при таких условиях закономерности разрушения качественно иные, чем при хрупком разрыве в присутствии ртутной пленки. Следовательно, хрупкое разрушение с участием поверхностно-активного вещества следует сопоставить именно с хрупким разрушением на воздухе. [c.222]


    Для проведения гидравлического испытания заполнить изделие рабочей жидкостью. Применяется вода с температурой не ниже 5°С и не выше 40°С, если в технических условиях не указано конкретное значение температуры, допускаемой по ус-гювию предотвращения хрупкого разрушения. [c.13]

    Наиболее распространенными являются маятниковые копры. Они служат для испытания материалов на ударную вязкость. Как отмечалось выше, высокая скорость деформации способствует хрупкому разрушению материала. Кроме того, известно, что концентраторы напряжений (отверстия, вырезы, выточки) создают в ряде случаев напряженное состояние, близкое к всестороннему растяжению, которое способствует хрупкому разрушению. Поэтому наиболее опасными по отношению к хрупкому разрушению условиями работы деталей конструкций и машин являются ударные нагрузки при наличии концентратора напряжений. Стандартным методом таких испытаний и является испытание материала на ударную вязкость. [c.270]

    Таким образом, в зависимости от металла, условий и характера нагружения разрушение происходит по механизму вязкого или хрупкого разрушений. Вязкое разрушение реализуется в результате макроскопической или локальной потери устойчивости пластических деформаций. Деформации, предшествующие вязкому разрушению, достаточно велики и составляют более 10-15%. При нормальных условиях эксплуатации трубопроводов и сосудов вязкое разрушение возможно лишь при наличии макроскопических дефектов. Излом при вязком разрушении волокнистый, иногда имеет шиферность, древовидность, [c.74]

    Трещины, вызванные коррозией. Продукты коррозии раздвигают металл и увеличивают трещину при неблагоприятных условиях до полного нарушения целостности. В основании трещины концентрируются напряжения, что может привести к хрупкому разрушению. [c.137]

    В печах для проведения высокотемпературных процессов, эксплуатируемых в более жестких условиях, появление дефектов, кроме перечисленных, может быть связано со структурными изменениями аустенитной трубной стали, что приводит к снижению ее прочностных характеристик и вызывает хрупкое разрушение. Поэтому для таких печей в зависимости от режима [c.202]

    Крупногабаритное сварное технологическое оборудование для нефтегазовых отраслей промышленности - абсорберы, газосепараторы, пылеуловители, реакторы гидрокрекинга, а также магистральные нефте- и газопроводы и др., эксплуатируются в сложных условиях механического нагружения и внешних воздействий (температур, изменяющихся в диапазоне от -70 до 560°С, коррозионноактивных сред, силовых нагрузок). Отмеченные факторы могут способствовать развитию трещиноподобных дефектов, возникающих в процессе изготовления (например, горячие и холодные трещины, трещины повторного нагрева) или эксплуатации (например, при отслаивании плакирующего слоя) конструкций и их преждевременному выходу из строя в результате частичного или полного хрупкого разрушения. [c.236]


    Хрупкое разрушение печных труб возможно на установках каталитического риформинга. Перерабатываемое углеводородное сырье и водород при 530—600 °С и избыточном давлении 2—5 МПа, воздействуя на печные трубы, вызывают поверхностное науглероживание. Глубина науглероживания труб из стали 15Х5М в этих условиях достигает 3,5—5,0 мм за 7— 8 лет эксплуатации. Кроме того, при длительной работе в установленном режиме в сталях происходят структурные изменения. Эти изменения, приводящие к снижению механических характеристик прочности и пластичности, получили название водородной хрупкости или водородной коррозии. [c.150]

    Для предотвращения хрупкого разрушения сварной конструкции необходимо, с одной стороны, при заданных условиях ее работы иметь возможность определить безопасные размеры трещиноподобных дефектов, превышение которых приводит к их неустойчивому (спонтанному) [c.237]

    Наглядным представлением допустимых условий нагружения является диаграмма хрупкого разрушения, по- [c.246]

    НОМ работают при нормальных температурах, при которых маловероятно охрупчивание металла шва. Кроме того, большинство труб и сосудов относятся к категории тонкостенных конструкций оболочкового типа, для которых реализация хрупкого разрушения требует специфических условий низкая температура коррозия под напряжением и др. Поэтому важно знать напряженное состояние элементов не только при упругих, но и при упругопластических и больших пластических деформациях. [c.260]

    Специфика условий службы битумных покрытий состоит в том, что разрушение покрытий возможно как от касательных (вязкое разрушение), так и от нормальных (хрупкое разрушение) напряжений. В условиях, при которых сопротивление касательным усилиям в покрытии выше сопротивления нормальным, разрушение происходит вследствие нормальных напряжений (рис. 6.1). Кривые 3, 4, 5 показывают, что независимо от величины напряжения в мастиках развиваются только упругие деформации и возможно хрупкое [c.147]

    Испытания образцов под нагрузкой в лабораторных условиях, а также контроль промышленных изделий на разрушение позволяют получить много различных данных, которые пригодны для оценки процесса разрушения. Подобные данные, например время начала п полного разрушения, характеризуют тип разрушения (пластическое или хрупкое разрушение, разрушение всего образца или только его поверхности), динамику образования треш,ины и изменение физических или химических свойств образца. Естественно, самая прямая оценка результатов испытания или набора имеющихся данных заключается в получении непосредственной корреляции интересующих свойств (например, долговечности) с параметрами внешних условий нагружения (например, напряжением и температурой). На рис. 1.4 полученные результаты представлены именно в этих переменных (для труб из ПВХ под действием внутреннего давления воды). При работе с подобным графиком возникает ряд вопросов  [c.58]

    В работе разработана методика расчета прочности сварных соединений со смещением кромок в условиях вязкого, квазихрупкого и хрупкого разрушения. Расчетные методы подтверждены экспериментально на модельных и натурных сварных соединениях. [c.4]

    Определяющими условиями возникновения хрупких разрушений высокотемпературных конструкций, выпо шенных с применением аустенитных злектродов, являются факторы неоднородности и ухудпге-ния свойств отдельных зон сварных соединений. [c.225]

    При остеклении рекомендуется ставить пластины стекла площадью не менее 0,8 м и толщиной до 4 мм, разрушающиеся при давлении до 38 МПа (380 кгс/м ). При таких условиях площадь остекленной поверхности может назначаться без проверочного расчета основных несущих конструкций здания, так как при повышении взрывной нагрузки, обусловленном инерционностью, разрушение остекления не превыщает 5°/о. Следует отметить, что стеновые легкосбрасываемые элементы при различных условиях срабатывают на 30% эффективнее по сравнению с элементами, расположенными в покрытии. Для изготовления легкосбрасываемых конструкций наиболее предпочтителен материал с хрупким разрушением. Это необходимо учитывать при проектировании и строительстве зданий с производствами, в которых возможны пылевыделе-ние и взрывы пылевоздушных смесей. [c.273]

    Как отмечалось ранее, разрушения делят на хрупкие и вязкие. Промежуточным между ними является квазихруп-кое разрушение, как наиболее часто встречаюшееся в реальных условиях эксплуатации конструкций. Заметим, что хрупкие разрушения реализуются не только в (природно) хрупких материалах. При определенных условиях пластичные стали могут разрушаться по механизму хрупкого разрушения в результате действия ряда охрупчивающих факторов, которые можно разделить на три основные группы механические (большая жесткость конструкции и напряженного состояния, локальное стеснение деформаций в дефектах и концентраторах напряжений, механическая неоднородность, скорость нагружения и цикличность) внешняя среда (коррозия, радиация, низкая температура) структурные изменения (деформационное старение, распад метастабильных фаз и др.). [c.77]


    В процессе производства труб, монтаже и строительстве, а также при эксплуатации трубопроводов могут возникать общие и локализованные пластические деформации. Они способствуют деформационному охрупчиванию и старению металла. В связи с этим возникает опасность реализации хрупкого разрушения при наличии острого дефекта, как царапина (риска). Другим охрупчи-вающим фактором является отрицательная температура. Охрупчивание металла может происходить при одновременном действии механических напряжений и коррозионных сред, например, в сероводородосодержащихся. В условиях хрупкого или квазихрупкого разрушения разрушающие напряжения могут быть значительно меньше предела прочности и даже предела текучести. [c.294]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    Трубные доски. Трубные доски обычно изготавливаются путем ковки, причем наиболее предпочтительной является ковка с высадкой, т. е. ковка нз относительно толсгой бол-ыапки, а пе из плоского листа. Использование пластин для изготовления трубных досок обычно не принято из-за возможного расслоения в местах, где доска приваривается к кожуху. Трубные доски могут покрываться аустенитной хромоникелевой сталью путем сварки плавлением или с использованием методов взрыва II]. При нанесении покрытия взрывным методом полезно предусмо1реть меры против хрупкого разрушения, используя, напрнмер, про-шедщий динамические испытания лист при условии, что обработанные механическим способом канавки хорошо закруглены или лист предварительно нагрет перед сваркой. [c.314]

    Некоторые стали утрачивают свои пластические свойства при низкой температуре и вследствие этого могут испытывать хрупкое разрушение при умеренных нагрузках. Треш ина, возникшая в хрупком материале вблизи концентратора напряжений, сама становится таким концентратором, в результате чего она быстро распространяется и приводит к длинному разрыву. В таком разрыве поперечное сужение не велико, а разрыв обычно значительно длиннее, чем ири пластическом разрушении в таких же условиях. Сосуд при этом люжет развалиться на отдельные куски, как, например, показанный на рис. 7.20 [461, в отличие от щелевого обрыва, показанного на рис. 7.19. При хрупком разрушении возникает опасность поражения разлетаюашмися осколками. Хрупкие [c.157]

    Эксплуатационные повреждения оборудования условно разделяют на три группы [128] инициация неглубоких трещин образование трещин с нарушением герметичности хрупкое разрушение. Первые два типа повреждений обычно инициируются при наличии концентраторов напряжений в материале и нестационарном нагружении. Хрупкое разрушение реализуется, как правило, в условиях высокой стесненности деформаций, наличии трехосных остаточных напряжений и при низких температурах, способствующих охрупчиванию материала. Повреждения, вызываемые действием коррозионных сред и нестационарностью нагружения, принято связывать с коррозионно-механической усталост ью. [c.9]

    В аппаратостроении и трубопроводном транспорте, как правило, применяются достаточно пластичные тaJШ. Многие т )убопрово т .1, нефтепроводы и сосуды в основном работают при нормальных температурах, при которых маловероятно охрупчивание металла пша. Кроме того, большинство труб и сосудов относятся к категории тонкостенных конструкций оболочкового типа, для которых реализация хрупкого разрушения требуе г специфических условий низкая температура коррозия под напряжением и др. Поэтому важно знать напряженное состояние элементов не только при упругих, но и при упруго-пластических и больших пластических деформациях. [c.8]

    Из ранних исследований графитов [1] видно, что в наилучшем соответствии с экспер нментальны.ми данными находится тз к назьгваемый о-бобщенный критерий прочности , разработанный на основе совмещения условий пластичности и хрупкого разрушения [2]. [c.97]

    Эффект вязкого или хрупкого разрушения монсет быть вызван и условиями деформирования. При больших скоростях деформирования, когда скорость возрастающего напряжения настолько велика, что не успевают произойти вязкопластичные деформации, релаксация протекает неполностью, наступает хрупкое разрушение. [c.144]

    Переход от роста трещины с докритической скоростью к быстрому ее росту особенно явно выражен в ПММА, но более или менее явно обнаруживается во всех полимерах, подверженных хрупкому разрушению. Соответствующие критические величины Ki и Gj характеризуют процесс разрушения материала. В табл. 9.1 дан (неполный) перечень измеренных критических значений (Gi и / ie) и удельных энергий разрушения, относящихся к частным условиям проведения экспериментов (<3с, Gd, Giii). Здесь же указаны основные экспериментальные параметры и интервалы их изменения. [c.360]

    Наличие трешин, образующихся на стадии изготовления элементов конструкций или в процессе их эксплуатации вследствие усталости материалов, нередко становится причиной хрупкого разрушения, носящего катастрофический характер. Предполагается, что разрушение конструкции с трещиной происходит тогда, когда длина трещины достигнет кригаческой величины. Если определяющей яшмется герметичность конструкции, то длина трешины, которая приводит к потере герметичности, может быть использована в качестве критерия разрушения. Если конструкция с трещиной предназначена для работы при сравнительно низких температурах, то в качестве критерия разрушения необходимо использовать показатели трешиностойкости, определенные при соответствующих условиях. Критерием разрушения может служить также критическая величина остаточной статической прочности, при достижении которой элемент конструкции будет разрушаться. [c.51]

    Следует отметить, что сформулированньге условия геометрического и механического подобия обеспечивают тождество напряженных состояний и относительных деформаций не во всех случаях. Отклонения наблюдаются, в частности, при хрупком разрушении, при очень больших различиях в абсолютных размерах образцов (масшта()ный фактор) и в ряде других случаев, каждый из которых имеет свое объяснение. Например, влияние масштабного фактора можно объяснить на основе статистических теорий прочности. Снижение механических свойств при увеличении размеров образцов связывают с увеличением вероятнос-ги существования опасных поверхностных и внутренних дефектов — концентраторов напряжений, вызывающих преждевременную деформацию и эазрушение. [c.250]

    Предельным состоянием полимера часто называют такое напряженное состояние, при котором дальнейшее повышение напряжений сопровождается усилением процесса вынужденноэластической деформации, являющегося аналогом пластической деформации в металлах. Такое определение предельного состояния неприменимо для хрупкого разрушения, которое является наиболее опасным видом разрушения. При совмещении в одном аналитическом выражении условий хрупкого разрушения и вынужденноэла- [c.284]

    Рассмотренная схема потери трещиной устойчивости под действием внешних растягивающих напряжений справедлива только в случае идеально хрупкого разрушения твердого тела. В связи с рассмотрением роли условий деформирования и структуры твердого тела в проявлении эффекта Ребиндера эти представления ниже обобщены на тела, в которых разрушение сопровождается заметным пластическим деформированием там же затрагивается вопрос о природе и ясловиях возникновения зародышевых микротрещин. [c.335]


Смотреть страницы где упоминается термин Хрупкое разрушение, условия: [c.69]    [c.243]    [c.95]    [c.71]    [c.5]    [c.25]    [c.213]    [c.338]    [c.42]    [c.68]    [c.229]   
Коррозия (1981) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Хрупкое разрушение



© 2025 chem21.info Реклама на сайте