Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан фотоэлектронный спектр

    Согласно теории электронных пар (точечные структуры Льюиса), в метане четыре атома водорода связаны четырьмя электронными парами с центральным атомом углерода. Лежащие глубоко внутри 18-электроны атома углерода можно рассматривать как несвязывающие, и в большинстве случаев ими можно пренебречь. Четыре валентные орбитали метана не идентичны одна орбиталь не имеет узловых плоскостей, а три другие представляют собой вырожденные орбитали (т. е. равной энергии) и имеют по одной узловой плоскости. Формы этих орбиталей изображены на рис. 2.1. Необходимо ясно понимать, что существование связывающих орбиталей разной энергии никоим образом не противоречит картине электронных пар, в которой все углерод-водо-родные связи идентичны. Тетраэдрическое расположение атомов водорода четко видно при комбинации этих четырех орбиталей. Наличие различающихся между собой молекулярных орбиталей удается продемонстрировать только методом фотоэлектронной спектроскопии, позволяющим непосредственно измерять энергетические уровни электронов. Фотоэлектронный спектр подтверждает, что в валентной [c.15]


    В гл. 2 уже говорилось о том, что метан содержит два типа связывающих молекулярных орбиталей тотально симметричную 1/1 и три вырожденные орбитали 1/2, и /4, каждая из которых имеет узловую плоскость. Это не означает, что существует какое-то различие в связывании четырех атомов водорода. Водородные атомы размещены те-траэдрически вокруг центрального атома углерода, и связи имеют равную энергию. Чтобы рассчитать энергию диссоциации связи и другие физические характеристики связей углерод - водород, удобно скомбинировать 2в- и три 2р-орбитали атома углерода, и тогда получатся гибридные орбитали 8р (символ 8р указывает, что гибрид получен из одной 28- и трех 2р-орбиталей). Эти гибридные орбитали углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре тетраэдрические связи. Гибридизация-это математический прием, позволяющий рассчитать энергию и пространственную ориентацию атомов в молекуле. Если исследовать энергетические уровни в метане, например, методом фотоэлектронной спектроскопии, то в действительности мы обнаружим два энергетических уровня, о чем говорилось в гл. 2. Кроме того, величину константы спин-спинового взаимодействия Н—в спектре ЯМР можно интерпретировать через 5-характер центрального атома углерода. [c.35]

    Сочетание фотоионизации и масс-спектрометрии впервые было осуществлено Лоссингом и Танака [1268]. Для получения спектра они использовали не монохроматор, а прямое ультрафиолетовое излучение криптоновой разрядной лампы. Разрядную лампу подсоединяли к окошку из фтористого лития толщиной 0,5 мм. Такое окошко пропускает,75% лучей, имеющих длину волны 1300А и 45% лучей с длиной волны 1070 А. Ниже этой длины волны (эквивалентной 11,6 эв) пропускание резко падает. Масс-спектры, полученные при помощи этого устройства (1,3-бутаДиен, ацетон, 1-бутен, пропилен, анизол, диметилртуть), состояли в основном из молекулярных ионов с интенсивностью 10 а, но в случае иодистого аллила наблюдались также ионы аллила. Возможно также осуществить ионизацию метильного радикала. Во всех случаях получались очень слабые вторичные спектры, и даже в случае таких молекул, как метан, ионизационный потенциал которых слишком высок, чтобы под действием фотонов мог получиться спектр, все же наблюдался вторичный спектр. Действительно, ионы могут образовываться различными непрямыми путями. Например, с поверхности, бомбардируемой фотонами, могут эмитироваться фотоэлектроны, которые, будучи ускорены рассеянными электрическими полями, вызовут образование ионов. Кроме того, ионы могут образоваться в двухступенчатом процессе, включающем ионизацию возбужденной молекулы. Для подавления этого процесса работу следует проводить при низком давлении газа и низкой интенсивности облучения. Расчеты Лоссинга и Танака показали, что отношение ионов, поступающих на коллектор, к числу квантов в ионизационной камере составляет величину 1 10 аналогичное соотношение получается при [c.129]



Органическая химия Том1 (2004) -- [ c.144 , c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Фотоэлектронные спектры

Фотоэлектроны



© 2024 chem21.info Реклама на сайте