Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты также Ионообменные смолы

    Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 —металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло — раствор, а также ионообменная смола — раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло—раствор и катионитная смола — раствор такими ионами являются ионы щелочного металла и водорода на границе анионитная смола — раствор — ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала — и фазовый жидкостный, и диффузионный —не являются равновесными. [c.204]


    В промышленной практике широко распространены методы, основанные на ионообменной адсорбции, сущность которой для случая умягчения воды состоит в следующем адсорбент поглощает пз воды катионы Са" и Mg" путем обмена на ионы, выделяемые адсорбентом в раствор. Для этих целей служат ионообменные смолы (стр. 258), а также специальные неорганические материалы—катиониты. [c.441]

    Для умягчения воды могут также использовать так называемые ионообменные смолы. При этом жесткая вода пропускается через специальные колонки. Ионы жесткости остаются на ионообменной смоле, а вместо них из смолы выделяются ионы, не создающие жесткости (обычно ионы Ыа ). Детально этот метод мы рассмотрим при выполнении лабораторной работы. [c.82]

    Методы очистки воды с помощью ионообменных смол в настоящее время широко применяют как в лабораторных условиях, так и в промышленности. Ионообменные смолы — это нерастворимые высокомолекулярные вещества, которые имеют ионогенные группы гидроксила и гидроксония, способные к реакциям обмена с ионами, содержащимися в воде. Удалить диссоциированные в воде соединения можно фильтрованием воды либо последовательно через колонки с анионитом и катионитом, либо через смесь катионита и анионита (фильтр смешанного действия). Этим методом можно получить воду с очень низким значением удельной электропроводности. Обычно в деионизованной воде из неорганических примесей присутствуют только соли кремниевой кислоты или соединения железа в коллоидном состоянии. Однако в воде, очищенной на ионообменных смолах, содержатся примеси органических веществ, которые вымываются из ионитов (незаполимеризо-ванные мономеры, катализаторы синтеза и стабилизаторы высокомолекулярных соединений). В связи с этим деионизованная вода обычно не применяется при исследованиях строения границы между электродом и раствором, а также электрохимической кинетики. [c.27]

    Из-за ограниченного набухания в ионитах объемная концентрация фиксированных групп обычно очень значительна [37]. Концентрация фиксированных ионов (гидрофильных групп) и количество поперечных связей в основном определяют степень набухания, от которой зависит подвижность противоионов, а значит, и скорость обмена. Строение матрицы определяет также химическую и термическую стойкость ионообменных смол. [c.53]

    Ионы в растворе. Ионы металлов I группы в растворах гидратированы в неопределенной степени. Рентгеновские спектры рассеяния показывают, что К+ удерживает четыре молекулы воды в первичной гидратной оболочке. Так как Ыа+ образует очень устойчивый [Ма(МНз)4]+-ион в жидком аммиаке, очевидно, и в водных растворах первичная гидратная оболочка содержит четыре молекулы воды. Ничего определенного неизвестно об ионах КЬ+ и Сз+. Вполне возможно, что оба они, и особенно Сз+, могут удерживать шесть молекул воды в первичной гидратной оболочке. Однако, поскольку электростатические силы действуют и за пределами этой оболочки, добавочные молекулы воды будут присоединяться в виде неопределенных слоев с уменьшающейся прочностью. Очевидно, большой катион менее способен притягивать добавочные молекулы воды, так что, хотя кристаллографические радиусы в группе сверху вниз увеличиваются, радиусы гидратированных ионов, как видно из табл. 16.2, уменьшаются. Энергия гидратации при этом также уменьшается (стр.60,4.1). Уменьшение размера гидратированного иона проявляется во многом увеличивается подвижность ионов в электролите, а также прочность связи иона с ионообменной смолой. [c.268]


    Интенсивность связи ионов с ионообменной смолой зависит также и от поляризационных свойств обменивающихся катионов [c.168]

    Основными достоинствами синтетических ионообменных смол как адсорбентов являются их большая обменная емкость, химическая стойкость и механическая прочность, разнообразие кислотно-основных свойств. Обменная емкость ионитов зависит главным образом от числа активных (ионогенных) групп в ионите, приходящихся на единицу массы сухой смолы. Поэтому для данного ионита емкость постоянна. Однако на практике емкость ионита зависит от условий проведения адсорбции, а также от свойств и размеров адсорбируемых ионов. Фактическая емкость не всегда достигает теоретической величины. [c.341]

    В книге, предлагаемой читателю, освещены только некоторые вопросы, посвященные применению электродиализа с ионитовыми мембранами в радиохимическом производстве и в гидрометаллургии урана, а также для обессоливания природных вод. Кроме того, изложены методы определения физико-механических и электрохимических свойств ионитовых мембран. В гл. I даны элементы теории переноса ионов в ионообменных смолах и мембранах. В остальных главах приведены физико-химические характеристики и отражены вопросы получения и применения ионитовых мембран. [c.3]

    Адсорбенты, способные к ионному обмену, называют ионитами. Они встречаются в природе (некоторые силикаты и т. п.), а также изготавливаются искусственно (сульфоугли п т. п.) или синтезируются (ионообменные смолы и т. п.). [c.126]

    Обмен ионов характерен также для высокомолекулярных полиэлектролитов и в первую очередь для ионообменных смол, представляющих собой сплошную пространственную сетку (каркас) полимера, в узлах которой равномерно закреплены ионы одного знака (аналогичные ионам внутренней обкладки) подвижные противоионы находятся в растворе внутри сетки и являются обменными. Сетка полимера, заполненная раствором, рассматривается в настоящее время как одна гомогенная фаза поэтому представления о границе раздела фаз и адсорбции в этих системах теряют физический смысл. Тем не менее законы ионного обмена являются общими для таких полиэлектролитов и для типичных гетерогенных адсорбентов. Поэтому все поглотители, для которых характерен процесс эквивалентного обмена подвижных ионов, в то время, как ионы другого знака закреплены в структуре, носят общее название ионитов. [c.124]

    Ионный обмен также относится к числу эффективных методов разделения, используемых, в частности, для глубокой очистки некоторых веществ. Разделение проводят с помощью ионообменных смол, представляющих высокомолекулярные соединения с реакционноспособными Н или ОН - [c.15]

    Двойной электрический слой и соответствующая разность потенциалов возникает также при избирательной адсорбции ионов из одной фазы на поверхность другой при ориентированной адсорбции полярных или неполярных, но поляризуемых молекул на любой поверхности на границе металл — вакуум на инертном металле за счет окисления — восстановления неметалла при ионообменных процессах на границе стекло — раствор, ионообменная смола — раствор и др, [c.123]

    Широкое применение хроматографического метода в различных областях химии началось с 30-х годов этого столетия и было связано с развитием теории адсорбции и ионного обмена, а также с синтезом и применением новых эффективных неорганических и органических сорбентов, в том числе ионообменных смол. Одновременно совершенствовалась техника хроматографического анализа и разрабатывались новые принципы сорбционного разделения веществ. [c.6]

    Роль структуры ионообменной смолы видна также из опытов по изучению самодиффузии, т. е. процесса перераспределения одноименных ионов между раствором, содержащим эти ионы, и ионитом, насыщенным этими ионами (рис. 29). Так, самодиффузия стронция, меченного изотопом 8г, из растворов в насыщенные стронцием катио- [c.101]

    Исследование ионообменных смол показало, что в общем случае константа обмена уравнения (XI.6) является функцией степени замещения одного иона другим (состава ионита). Особенно четко эта зависимость проявляется для ионитов с высокой плотностью заряда, т. е. сильно сшитых органических ионитов с высокой обменной емкостью, а также для многих неорганических ионитов. Уравнения (XI. 3) и (XI. 6) применимы в умеренно концентрированных растворах (до 0,1—1 н.) к процессу обмена на ионитах, умеренно селективных относительно поглощаемого иона при более высоких концентрациях появляются отклонения от простых зависимостей. [c.678]

    Способность изменять числа переноса характерна не только для гетерогенных капиллярных систем, но и для. гомогенных мембран, изготовленных из ионообменных смол. В них электричество переносится практически целиком подвижными противоионами (п+1), тогда как фиксированные в матрице ионы (анионы в нашем случае) не участвуют в переносе. В этих системах наблюдается также избыточная проводимость (обусловленная высокой концентрацией ионов), аналогичная х,. Поскольку способность изменять кип приводит к следствиям, единым для обоих классов систем, мы объединим их в дальнейшем изложении общим термином диафрагмы  [c.232]


    Следует также упомянуть о применениях ионного обмена в современной медицине при заболеваниях, характеризующихся нарушениями ионного баланса в органах и тканях (язве желудка, гипертонических отеках и др.). Путем введения высокодиспергированных порошков из ионообменных смол удается во многих случаях сдвинуть ионный баланс организма. [c.178]

    А. и. с.-твердые зернистые продукты. Размер зерен, имеющих обычно сферич. форму,-от 0,2 до 2,0 мм. Общая обменная емкость смол составляет 4,0-7,1 мг-экв/г, по анионообменным группам-1,0-1,9 мг-экв/г. С переходными металлами А. и. с. образуют хелаты. Этим обусловлена их высокая избирательность по отношению к сорбируемым ионам и молекулам (см. также Селективные ионообменные смолы). Важное достоинство нек-рых А. и. с.-возможность их регенерации при определенных условиях промывкой водой (при этом гидролизуются ионогенные группы), тогда как для регенерации анионо- и катионообменных смол необходимы р-ры к-т и щелочей. [c.157]

    Применяют М. и. с. при осуществлении ионного обмена в условиях высоких скоростей потока, в неполярных и окис-лит.-восстановит. средах, с участием крупных ионов, как катализаторы или носители каталитич. систем, а также в тех же областях, что и гелевые ионообменные смолы (см Иониты). [c.638]

    Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусл(Звливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 — металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор солн металла в обмене участвуют катионы металла (см., однако, ниже). Скачок потенциала на границе стекло — раствор, а также ионообменная смола — раствор по5 вляется в результате обмена, в котором участвуют два вида одноименно заряженных ионов. На границах стекло — раствор и катионнг—раствор такими нонами являются ноны щелочного металла и водорода иа границе анионит— раствор это ион гидроксила н какой-либо другой анион. Прн контакте двух несмешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую. [c.28]

    В последнее время были гюлучены электроды, селективные к Си-+, d-+ и РЬ - , из с льфидов этих металлов в силиконовом каучуке. Для твердых rereporeii-ных мембран в качестве ионита применяют также ионообменные смолы. Например, созданы электроды, достаточно селективные на ионы Са" и К это.му же т1 пу [c.462]

    В этой главе речь пойдет, в основном, о химии гидратированного иона Ве2+ как в кислой, так и в щелочной среде. Будет рассмотрена также химия гидроокиси бериллия. Особое внимание уделено сильно выраженной тенденции бериллия образовывать полиатом ные соедн-Су ения, что определяет химию этого элемента в раство-V №х. Кроме того, будут рассмотрены взаимодействия иона с ионообменными смолами и экстрагентами. [c.17]

    Обработка среды включает в себ5[ все способы, уменьшающие концентрацию ее компонентов, особенно опасных в коррозионном отношении. Так, например, в нейтральных солевых средах и пресной воде одним из самых агрессивных компонентов является кислород. Его удаляют деаэрацией (кипячение, дистилляция, барботаж инертного газа) или связывают при помощи соответствующих реагентов (сульфиты, гидразин и т. п.). Уменьшение концентрации кислорода должно почти линейно снижать предельный ток его восстановления, а следовательно (см. рис. 24.7), и скорость коррозии металла. Агрессивность среды уменьшается также при ее подщелачивании, снижении общего содержания солей и замене более агрессивных ионов менее агрессивными. При противокоррозионной подготовке воды для уменьшения накипеобразования широко применяется ее очистка ионообменными смолами. [c.507]

    В последние годы ассортимент реагентов для ионного обмена—их называют теперь ионитами — значительно расширился. Некоторые из ионитов (сульфированные угли и соответствующие ионообменные смолы), называемые катионитами, обладают способностью обменивать содержащиеся в растворе катионы на ионы водорода. Другие (например, продукты конденсации фенилендиаминп с формальдегидом), называемые анионитами, обменивают различные анионы на ионы гидроксила. Последовательное применение ионитов этих двух видов позволяет достигать практически полной деминерализации воды без дистилляции (сами иониты легко регенерируются катиониты — промывгой раствором кислоты, аниониты — растворами щелочи или соды). Иониты применяются также в хроматографическом анализе для разделения близких между собой ионов. [c.373]

    Кинетика ионного обмена. В результате химической реакции в растворе ионы перемещаются по направлению к ионообменной смоле или от нее. В этом случае общая скорость ионообмена будет зависеть от скоростей этапов диффузии через неподвижный слой зерен ионообменной смолы, а также скорости химической реакции на поверхности обмена. Так как ионные реакции протекают с очень большой скоростью, этапом, который определяет скорость процесса, является диффузия ионов через неподвижный спой. На межфазной поверхности системы жидкость — твердое тело практически мгновенно устанавливается равновесие. [c.339]

    Неподвижная фаза. Способностью к ионному обмену обладают некоторые минеральные материалы. Среди них цеолиты (анальцит, фозажит, стильбит), глинистые материалы (каолинит, монтмориллонит, слюды, силикаты). Такой способностью обладают также синтетические неорганические иониты (иониты на основе циркония, оксида алюминия), а также специально приготовленные сульфированные угли. Нашедшие наибольшее практическое применение ионообменные смолы состоят как бы из двух частей матрицы (каркаса), не участвующей в ионном обмене, и ионогенных групп, структурно связанных с матрицей. Такой матрицей чаще всего является сополимер дивинилбензола и полистирола. Дивинилбензол как бы сшивает поперечными связями цепи полистирола, что приводит к образованию зерен полимера, пронизанных порами. [c.604]

    Благодаря обменной адсорбции твердый адсорбент, практически нерастворимый в воде (или другом растворителе), вступает в активное взаимодействие с соприкасающимся с ним раствором. Ионообменный процесс протекает так, что при адсорбции электролитов избирательно адсорбируются катионы или анионы, заменяющиеся на эквивалентное количество ионов того же знака, содержащихся в адсорбенте. Адсорбенты, способные к ионному обмену, встречаются и в природе (некоторые силикаты и алюмосиликаты, пермутиты и др.), а также изготовляются специально (например, сульфоугли) и синтезируются (ионообменные смолы). [c.189]

    Ионообменные смолы. Эти ионообменники различают как по структуре углеводородного каркаса , не принимающего участия в обмене ионов, но в значительной степени определяющего физические свойства ионита, так и по природе ионогенных групп, присоединенных к каркасу (матрице). Чем менее жесткой является структура матрицы, тем больше набухает ионит при контакте с растворителем, молекулы которого проникают вглубь ионита, обеспечивая возможность протекания ионообмена во всем объеме частицы сорбента. Изменяя пространственную структуру и жесткость матрицы сорбента, можно создавать своеобразные молекулярные сита , доступные или не доступные для обмена ионов в зависимости от ионных радиусов последних. Строение матрицы определяет также скорость ионообмена, химическую и термическую устойчивость ионита. [c.155]

    Использование ионообменных мембран в анализе Ионообменной (ионитовой) мембраной называют пленку, полученную из ионообменной смолы. Находясь в растворе электролита, ионитовые мембраны избирательно пропускают ионы только одного знака заряда, а именно катионитовые мембраны пропускают только катионы, анионитовые — анионы. Это свойство ионитовых мембран используют для разделения катионов и анионов, а также для их отделения от неэлектролитов методом электродиализа. Центральную часть электродиализатора, в которой находится анализируемый раствор, отделяют от анодной части анионитной, а от катодной — катионитной мембраной. В процессе электродиализа к аноду мигрируют только анионы, так [c.205]

    Мешающие анионы обычно предварительно удаляют из растворов. Например, РО -ионы можно удалить из анализируемого раствора несколькими способами осаждением в виде РеР04, 2г(НР04)а и т. п. Фосфат-ионы можно также удалить из раствора при помощи ионообменных смол (см. ниже). [c.463]

    На итальянской атомной электростанции Латина [300] сооружена установка для переработки жидких отходов из бассейнов выдержки, обмывочных вод, сбросов спецпрачечной и санпропускников и пр. Различные группы вод перерабатываются на отдельных технологических нитках. Воды бассейнов выдержки твэлов (удельная активность 1-10 кюри/л) должны подвергаться выдержке, фильтрации и ионному обмену, сначала раздельному, а затем в смешанном слое. После контроля очншенные воды возвращаются на повторное использование в бассейны выдержки твэлов. Воды от других объектов также выдерживаются, из них осаждаются твердые частицы, затем они фильтруются и направляются в выпарные аппараты. Суммарный коэффициент очистки составляет 10" —10 . В начальный период эксплуатации установка управлялась вручную, но оборудование было скомпоновано таким образом, что в дальнейшем оказался возможным переход на дистанционное управление. Удаление отработанных активных ионообменных смол производится дистанционно. [c.258]

    Наряду с кристаллическими мембранами в ИСЭ используются также гетерогенные мембраны (мембраны Пунгора), в которых твердый материал с ионной проводимостью в виде тонкодисперсного порошка помещен в инертную матрицу. Благодаря этому удается получить мембраны из соединений, которые не образуют кристаллы. В качестве активных веществ в таких мембранах применяют самые разнообразные материалы (труднорастворимые соли металлов, оксиды, карбиды, бориды, силициды, хелатные соединения, ионообменные смолы), а в качестве связующего материала - парафин, коллодий, поливинилхлорид, полистирол, полиэтилен, силиконовый каучук и др. Разработаны электроды с мембранами, селективными по отношению к ионам Р", СГ, Вг", Г, 8 , Ag", Ва ",Са ", 80/ , Р04 , а также ртутный электрод с мембраной из Hg8 или Hg8e в эпоксидной матрице. Некоторые из электродов выпускаются промышленностью. Считается, что они менее чувствительны к [c.200]

    Можно приготовить глины с одним видом обменного ка- тиона, воздействуя на них определенной солью и промывая их водой с целью удаления излишних ионов. Такую глину можно приготовить также путем пропускания разбавленной суспензии этой глины через ионообменную смолу, например Доуэкс 50 , которая предварительно насыщена нужным катионом. [c.147]

    Характеризуют И. спец. параметрами, количественно описывающими способность к обмену и селективность при обмене в многокомпонентном р-ре. Важнейшей количеств, характеристикой И. является обменная емкость-суммарное кол-во противоионов, приходящихся на единицу массы или объема И., в мг-экв/г(мл) или ммоль/г(мл). В зависимости от условий определения различают статич. и динамич. емкость. Коэф. распределения Р характеризует способность И. концентрировать извлекаемый компонент Л-, Р-отношение концентрации этого компонента в И. (с ) к его равновесному содержанию в р-ре (с ) Р = j . Для характеристики сродства (избирательности) И. к определенному иону или компоненту р-ра используют предельный коэф. распределения Р при с -> 0. См. также Ионный обмен. Избирательность зависит от структуры И., хим. строения ионогенных групп и от того, в какой форме извлекаемый ион находится в р-ре (напр., от степени его гидратации, размера, степени сольватации ионогенными и функц. группами). Макс. сольватация сорбируемого иона в фазе И. обеспечивает высокое сродство И. к этому иону. При сорбции крупных и сильно гидратир. ионов избирательность может определяться кол-вом и размером пор И., к-рые для синтетич. орг. И. зависят от типа и кол-ва сшивающего агента и инертного р-рителя, использованных при синтезе (см., напр.. Макропористые ионообменные смолы). [c.256]

    См. также Цеолиты органические, см. Ионообменные смолы регенерация 3/638 редоксные 3/662, 663 тромборезнстентные 2/505 хемосорбирующие 5/447 Ион-молекулярные комплексы 2/505 3/18,19 [c.614]

    См. также Иониты, Ионообменники радикальные, см. Ион-радикалы расплавы 4/346 3/857-839 рацематы 4/390 родамины 2/1083 смолы, см. Ионообменные смолы собирателн-флотореагенты 3/207, 208 [c.615]


Смотреть страницы где упоминается термин Иониты также Ионообменные смолы: [c.307]    [c.55]    [c.328]    [c.45]    [c.520]    [c.168]    [c.92]    [c.169]    [c.189]   
Химический энциклопедический словарь (1983) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты Ионообменные смолы

Иониты также Ионообменные смолы обменная емкость

Ионообменные смолы

Смолы иониты



© 2025 chem21.info Реклама на сайте