Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки гаплоидные

    Биологическая функция мейоза. Благодаря митозу поддерживается постоянство числа хромосом в ряду клеточных поколений. В отличие от митоза мейотический процесс обеспечивает уменьшение (редукцию) диплоидного числа хромосом (46 у человека) наполовину до гаплоидного (23 у человека). При оплодотворении в результате слияния двух гаплоидных половых клеток в зиготе восстанавливается диплоидное число 46, которое сохраняется во всех последующих митотических делениях. В мейозе расхождение гомологичных хромосом в разные половые клетки происходит случайно, что увеличивает генетическую изменчивость. Соматические клетки являются диплоидными (2п), они содержат обе гомологичные хромосомы одной пары, в то время как половые клетки гаплоидны (п) и несут только один гомолог из каждой пары. Последний цикл регулярного синтеза ДНК происходит в интерфазе непосредственно перед первым мейотическим делением и предшествует фазам мейоза, показанным на рис. 2.18. [c.54]


    Мейотическое деление претерпевают всегда только диплоидные клетки, гаплоидные же - никогда. Само слово диплоидный означает, что налицо имеется два набора хромосом например, вместо трех хромосом (гаплоид) в клеточном ядре находится 2-3 хромосом (диплоид). Иными [c.118]

    Рассмотрим отрезок хромосомы, содержащий цистроны 8ш и Ь. При конъюгации клеток мужская вводит в женскую свое генетическое вещество, и образуется зигота, т. е. диплоидная клетка, содержащая двойную хромосому (исходные бактериальные клетки — гаплоидные — имеют по одной хромосоме). Структура отрезка двойной хромосомы выглядит схематически так, как показано па рис. 100. [c.307]

    Недавно разработанные методы, позволяющие получать целые растения из единичных клеток, а также осуществлять слияние растительных клеток, могут иметь революционизирующее значение для селекции растений. Они могут послужить также основой нового метода научения фенотипического выражения генов у растений. Так, например, из гаплоидных ядер пыльцевых зерен удалось вырастить целые гаплоидные растения . Поскольку клетки гаплоидных растений содержат, по-вндимому, только по одной копии -большого числа генов, то в таких растениях легко обнаружить мутации, вызванные облучением или химическими агентами, что в свою очередь может способствовать значительному ускорению селекционных работ. [c.268]

    Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы. [c.143]

    Вегетативные клетки (гаплоидные) [c.69]

    Наиболее значительное сходство заключается в способности клеток к неограниченному росту путем митотического деления. Некоторые различия бактериальные клетки — гаплоидны, а соматические, как правило,-диплоидны бактериальные клетки значительно меньше, чем клетки эукариот, однако их можно получить в большом количестве, титр бактериальной культуры достигает 10 -10 на мл при культивировании бактериальных клеток можно наблюдать экспрессию большей части их генов, в то время как в культуре клеток многоклеточного организма значительная часть генов не экспрессируется. [c.291]

    В неделящихся диплоид ых соматических клетках высших организмов количество ДНК и ее нуклеотидный состав постоянны (для данного вида). Количество ДНК возрастает в процессе митотического деления, но возвращается к исходной величине в дочерних клетках. Гаплоидные половые клетки (гаметы) содернлат половинное количество ДНК того же нуклеотидного состава. [c.484]


    В результате мейоза из одной родительской клетки образуются четыре дочерние клетки. Каждая дочерняя клетка содержит половину числа хромосом в родительской клетке. Обычно родительская клетка бьшает диплоидной, а поэтому дочерние клетки гаплоидные. [c.151]

    Существенное преимущество растений по сравнению с животными, важное для генетики соматических клеток, заключается в том, что гаплоидные клетки растений можно культивировать in vitro. В процессе онтогенеза всех растений происходит смена гаплоидных и диплоидных фаз. У мхов и печеночников доминирует гаплоидная фаза. Эта фаза, называемая гаметофитом, сохраняется и у высщих растений, хотя у них она сильно редуцирована. В процессе мейоза образуются мужские и женские клетки, которые проходят несколько митотических делений. Диплоидность восстанавливается при оплодотворении. Клетки гаплоидной фазы можно поддерживать в культуре. В такой культуре клеток легко тестировать проявление рецессивных маркеров подобно тому, как это делается при работе с ауксотрофными маркерами бактерий. При использовании соответствующих селективных сред можно проводить скрининг больщих популяций клеток, подбирая условия, при которых способность к пролиферации сохраняют только нужные мутанты. [c.329]

    Понимание того факта, что половые клетки гаплоидны и поэтому должны формироваться с помощью особого механизма клеточного деления, пришло в результате наблюдений, которые к тому же едва ли не впервые навели на мысль, что хромосомы содержат генетическую информацию. В 1883 г. бьшо обнаружено, что ядра яйца и спермия определенного вида червей содержат лишь по две хромосомы, в то время как в оплодотворенном яйце их уже четыре. Хромосомная теория наследственности могла, таким образом, объяснить давний парадокс, состоящий в том, что роль отца и матери в определении признаков потомства часто кажется одинаковой, несмотря на огромную разницу в размерах яйцеклетки и сперматозоида. [c.14]

    Полный двойной набор хромосом называют диплоидным (2 п), а набор, получаемый от каждого из родителей через половые клетки, — гаплоидным (п). Все клетки высшего растения, за исключением гаплоидных половых, как минимум диплоидны. Гаплоидные половые клетки находятся преимущественно в зрелых пыльцевых зернах и в зародышевом мешке семязачатка. В жизненном цикле растения гаплоидный набор" получается из диплоидного в результате редукционного деления, или мейоза (см. стр. 34), протекающего в материнских клетках микро- и мегаспор, находящихся соответственно в пыльниках и семязачатке цветка. Возникшие таким путем гаплоидные клетки де лятся и дают начало мужским и женским гаметофитам, в которых в конце концов и образуются половые клетки, или гаметы, т. е. спермии и яйцеклетки. Когда — при половом размножении— женские и мужские гаметы сливаются в зиготу, происходит восстановление диплоидного числа хромосом, свойственного спорофиту. Прослеживая изменения в числе хромосом и в содержании ДНК, мы видим, что в цветковом растении совершается цикл, в котором диплоидия сменяется гаплоидией, а последующее слияние гаплоидных клеток разного генетического происхождения в новый диплоидный организм порождает новые комбинации генетических признаков. [c.33]

    Большинство гаплоидных лабораторных штаммов S. erevisiae стабильно экспрессируют один из двух генов, кодирующих половые феромоны и определяющих противоположные типы спаривания, которые принято обозначать а и а. При отсутствии клеток противоположного типа спаривания гаплоидные штаммы делятся почкованием. Если же клетки гаплоидных штаммов противоположных типов спаривания смешать, то образуются клетки с дитшоидным ядром. [c.287]

    Образование яйцеклеток и сперматозоидов подразумевает уменьшение нормального числа хромосом ровно вполовину этот процесс называется 1УКЙ1Ж)М (рис. 1.4). Гаметы, или половые клетки, гаплоидны, т.е. в них содержится по одному члену каждой пары гомологичных хромосом, и, таким образом, только половинное число хромосом каждого из родителей попадает во все другие, ссма-тические, клетки организма потомка. Распределение хромосом в мейозе происходит случайно, поэтому любой из членов гомологичной пары может оказаться во вновь образовавшихся зародышевых клетох. [c.18]


Смотреть страницы где упоминается термин Клетки гаплоидные: [c.15]    [c.438]    [c.127]    [c.35]    [c.327]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.104 ]

Молекулярная биология (1990) -- [ c.104 ]

Гены и геномы Т 2 (1998) -- [ c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте