Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растения селекция

    Большое значение имеет создание гаплоидов, позволяющее ускорить процесс селекции в 2 — 3 раза. Использование гаплоидных клеток и гаплоидных растений способствует обнаружению экспрессии введенного в клетку генома, редких рекомбинаций, рецессивных мутаций, которые в диплоидных растениях, как пра- [c.185]

    Второе направление развития Б. связано с клеточной инженерией. Культура растит, клеток может служить прежде всего источником свойственных данному растению вторичных продуктов, напр, антиаритмич. алкалоида ай-малина из раувольфин змеиной. Пользуясь способностью клеток растений превращаться на спец. средах в сформированное растение, клеточные культуры применяют для получения оезвирусных растений, пытаются проводить селекцию форм с нужными св-вами. Животные клетки более требовательны к условиям культивирования, им необходимы дорогостоящие среды. Все более широкое применение находят т. наз. гибридомы, полученные в лаборатории путем слияния двух различных клеток и служащие источником белков, необходимых для диагностики и лечения болезней человека, животных и растений. [c.290]


    В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лаборатории Р. Г. Бутенко (Институт физиологии растений им. К. А. Тимирязева). В настоящее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений. [c.193]

    Успехи селекции микроорганизмов выражаются в выведении штаммов, которые превосходят по продуктивности исходные формы в 10, 20, 50 и 100 раз. Как отмечает С. И. Алиха-нян (1968), подобные эффекты не известны истории селекции животных и растений. [c.179]

Таблица 6.4 Клеточные технологии в селекции растений (по Р.Г.Бутенко, 1999) Таблица 6.4 <a href="/info/1381267">Клеточные технологии</a> в селекции растений (по Р.Г.Бутенко, 1999)
    Известны факторы, обусловившие неудачи межвидового скрещивания конских бобов, делаются попытки преодолеть эти препятствия. Выделены также антипитательные вещества этого растения (вицин и конвицин), они представляют собой углеводы, которые, вероятно, могут быть устранены селекцией. Кроме того, изучены гены у гороха, которые, уменьшая количество зеленой вегетативной массы, способствуют образованию семян. Благодаря этому можно было бы одновременно повысить продуктивность на 10—20 % и облегчить уборку урожая, так как стебли у таких растений более прямые. [c.33]

    Недавно разработанные методы, позволяющие получать целые растения из единичных клеток, а также осуществлять слияние растительных клеток, могут иметь революционизирующее значение для селекции растений. Они могут послужить также основой нового метода научения фенотипического выражения генов у растений. Так, например, из гаплоидных ядер пыльцевых зерен удалось вырастить целые гаплоидные растения . Поскольку клетки гаплоидных растений содержат, по-вндимому, только по одной копии -большого числа генов, то в таких растениях легко обнаружить мутации, вызванные облучением или химическими агентами, что в свою очередь может способствовать значительному ускорению селекционных работ. [c.268]

    Генно-инженерные методы, в частности технология рекомбинантных ДНК, позволяют создавать новые генотипы и, следовательно, новые формы растений гораздо быстрее, чем классические методы селекции. Кроме того, появляется возможность целенаправленного изменения генотипа — трансформации — благодаря введению определенных генов. [c.144]

    В большинстве случаев запасные белки растений имеют несбалансированный для питания человека и животных аминокислотный состав. Так, запасные белки злаков — проламины — бедны лизином, триптофаном и треонином, что снижает их питательную и кормовую ценность. Улучшение аминокислотного состава белка путем традиционной селекции не дает желательных результатов, поскольку необходимые гены часто сцеплены с нежелательными признаками и наследуются вместе. Например, у мутантов кукурузы и ячменя повышение содержания лизина коррелировало с уменьшением синтеза основных запасных белков — зеи-на и гордеина, а также с уменьшением урожайности. [c.149]


    Клеточная инженерия — одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта — изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности — уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др. [c.158]

    Содержание белков в листьях растений и выход их с единицы возделываемой площади зависят от выбора вида растения и селекции. Вариабельность здесь еще очень велика. [c.260]

    Особую и весьма специфическую область применения парофазного анализа представляет исследование запахов. Анализу ароматов пищевых продуктов, цветов, табака, табачных и парфюмерных изделий уделяется значительное и возрастающее внимание прежде всего в связи с проблемами технологии, хранения, улучшения качества и облагораживания этих продуктов [23]. Все большее значение приобретает исследование аромата для селекции и таксономии плодовых и эфиромасличных растений, а также для создания искусственной пищи и имитаторов запаха [24,25]. Для изучения ароматов предпочтительна техника именно парофазного анализа, так как восприятие запаха органами обоняния происходит через посредство газовой фазы и ее анализ может дать наиболее правильное представление о природе и составе соединений, образующих ощущаемый аромат. Состав и запах активных компонентов, выделенных иными способами — экстракцией, перегонкой, от гонкой с водяным паром, — существенно отличаются от [c.235]

    Что касается полевых испытаний генетически модифицированных животных, то специалисты высказываются о них с большой осторожностью. Например, для определения способности некоторых трансгенных рыб существовать в природных условиях в США был построен чрезвычайно сложный аквариум, в котором были воссозданы эти условия, гарантирующий изоляцию рыб и невозможность их отлова браконьерами. В отличие от этого к тестированию трансгенных растений с улучшенными характеристиками, предназначенных для использования в пищу, относились не так строго. Преобладало мнение, что большинство таких растений не отличаются от обычных сортов, полученных путем селекции. В США все генетически модифицированные растения - независимо от способа модификации - должны проходить испытания в полевых условиях и все процедуры тестирования, необходимые для получения лицензии на их применение. При этом к полевым испытаниям трансгенных растений, содержащих гены инсектицидов или гены, обеспечивающие защиту от вирусной инфекции, предъявляются дополнительные требования. [c.525]

    Область применения. Химические и биохимические исследования белка, синтез аминокислот и пептидов, исследования гормонов, клиническая диагностика, экспериментальная и промышленная энзимология, селекция растений и др. [c.173]

    Приблизительно столько же испытаний необходимо провести при селекции растений для отбора одного нового вида с повышенным содержанием белка или более высоким содержанием Лиз и Мет. В клинической практике также имеется область, где анализ аминокислот используется в массовых обследованиях для выявления нарушений аминокислотного метаболизма у новорожденных. Во многих странах такое обследование уже введено в обязательном порядке, правда, с применением микробиологических методов, поскольку исследование огромного числа образцов другими методами аминокислотного анализа реально не выполнимо. [c.243]

    К важнейшим отраслям биоиндустрии (рис. 1.1) следует отнести некоторые отрасли пищевой промышленности (широкомасштабное выращивание дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов, ферментов) сельское хозяйство (клонирование и селекция сортов растений, производство биоинсектицидов, выведение трансгенных животных и растений) фармацевтическую промышленность (разработка вакцин, синтез гормонов, антибиотиков, интерферонов, новых лекарственных препаратов) экологию — защиту окружающей среды и устранение загрязнений (очистка сточных вод, переработка хозяйственных отходов, изготовление компоста и др.). [c.7]

    Определение Лиз необходимо, например при селекции растений, при оценке кормов и т. п. Принцип работы с большим числом проб заключается в следующем [8]. [c.251]

    Современная А. значительно отличается от классической А. кон. 19-нач. 20 вв., она пользуется несравненно более совершенными методами исследования, опирается на возросший уровень знаний, развитую хим. пром-сть и ши-рокзто сеть агрохим. служб. Т. наз. зеленая революция -резкое повышение урожайности с.-х. культур, достигнутое в начале 50-х гг. 20 в., связана не только с успехами генетики и селекции, но и с достижениями А. Агрохим. наука располагает знаниями о содержащихся в растениях в-вах (белках, углеводах и др.), биосинтезе и обмене в-в в растениях, фитогормонах, ферментных системах, болезнях растений. [c.29]


    Некоторые из указанных технологий стали традиционными, другие находятся на начальных этапах разработки. Наконец, есть такие методы, которые явно вышли из ранга вспомогательных, ускоряющих селекцию технологий. К ним можно отнести криосохранение генофонда — технологию, в настоящий момент приобретшую экологическую направленность или клональное микроразмножение растений, тесно связанное с проблемой их оздоровления от вирусных и других инфекций. Поэтому обзор этих технологий вынесен за рамки данного раздела. [c.184]

    И.и. создают в облучаемых объектах различные хим., физ. и биол. эффекты. В больших дозах И.и. угнетает жизнедеятельность растений, микроорганизмов и животных. Этот эффект лежит в основе радиац. стерилизации мед. препаратов и инструментов, консервации пищ. продуктов. В малых дозах И.и. служит мутагенным и активирующим фактором и используется для селекции растений, микроорганизмов (напр., при получении антибиотиков), для предпосевной обработки семян. В медицине И.и. находят применение как диагностич. средство и для лучевой терапии опухолей. Использование И.и. в пром-сти - основа радиац. технологии, частью к-рой является радиационно-химическая технология. [c.256]

    Изменение генома клетки могут осуществляты я тремя путями в результате изменения числа хромосом, числа и порядка расположения геиов или из-за изменения индивидуальных геиов. При изменении числа хромосом (т. наз. геномные М.) может происходить утрата или приобретение одной или иеск. хромосом (анеуплоидия), либо меняться число наборов хромосом (полиплоидия). Полиплоидия играет важную роль в эволюции растений и широко используется при их селекции и выведении новых сортов. У животных полиплоидия, как правило, иосит летальный характер, т.к. нарушает хромосомный механизм определения полз. [c.154]

    Осн. доля всех М. в природе обусловлена генными М. Они вызывают разнообразные изменения признаков. Большинство из М. вредны для организмов (могут вызывать уродство и даже гибель). Очень редко возникают М., улучшающие св-ва организма. Эти М. дают осн. материал для есгесгв. и искусств, отбора, являясь необходимьпл ус ювием эволюции в природе н селекции полезных форм растений, животных и микроорганизмов. Частота спонтанных мутаций у каждого вида генетически обусловлена и поддерживается на оптим, уровне. [c.155]

    Таким образом, использование суспензионных культур для синтеза вторичных метаболитов в промышленных масштабах имеет большие перспективы, и не только с точки зрения экономической выгоды получения более дешевой продукции в запланированных количествах. Важно, что использование культуры клеток спасет от уничтожения тысячи дикорастуших растений, ставших уже редкими, которые синтезируют необходимые человеку вещества. Увеличение выхода продукта может бьггь достигнуто благодаря дальнейшей исследовательской работе по селекции специализированных популяций клеток и оптимизации условий культивирования. Большой интерес представляет также дальнейшее развитие методов биотрансформации метаболитов и иммобилизации культивируемых клеток. [c.184]

    Активность ассимиляторных Н. имеет положит, корреляцию с урожаем растений и содержанием в них белка, что используется в селекции для отбора наиб, продуктивных растений. [c.256]

    Используют П. в аналит. целях (напр., для определения микроколичеств Н2О2, ароматич. аминов, загрязнений в окружающей среде), а также в иммуноферментном анализе. Данные по пероксидазной активности учитывают при селекции растений (чем выше эта активность, тем устойчивее к инфекции растения). Перспективно применение П. для селективного окисления орг. соединений, а также для глубокой очистки сточных вод от ароматич. соединений. [c.489]

    В настоящее время в сельском хозяйстве широко используют гербициды — химические соединения, применяемые для уничтожения сорной растительности. Гербициды широкого спектра действия могут не только уничтожать сорняки, но и угнетать рост культурных растений. В связи с этим возникает необходимость в создании растений, устойчивых к этим веществам. Существует два подхода к решению этой проблемы прямая селекция устойчивых к гербицидам мутантных форм растений, или мутантных клеточных штаммов (клеточная селекция), и генно-инженерный метод, который состоит во введении в растения генов гербицид-резис-тентности растительного или бактериального происхождения. [c.154]

    Гибридизация соматических клеток осуществляется благодаря слиянию протопластов, изолированных из соматических клеток растений, и служит для создания новых генотипов, новых форм растений. Использование изолированных протопластов позволяет решать множество теоретических и практических задач. С их помощью можно вести селекцию на клеточном уровне, работать в малом объеме с большим числом индивидуальных клеток, осуществлять прямой перенос генов, изучать мембраны, вьщелять пла-ствды. Протопласты непременно участвуют в соматической гибридизации. Термин соматическая гибридизация , означающий процесс слияния протопластов соматических клеток, был введен №. Мельхерсом в 1974 г. [c.188]

    С. Магешвари. В настоящее время в культуре гаплоидные растения получают из изолированных пыльников (андрогенез), изолированных семяпочек (гиногенез) из гибридного зародыша, у которого в результате несовместимости потеряны отцовские хромосомы (партеногенез). Новые сорта ячменя — Исток и Одесский-15 — были выведены благодаря комбинации партеногенетического метода с культурой изолированных зародышей за 4 года вместо 10 — 12 лет, необходимых для обычной селекции. [c.186]

    После получения различных сомаклональных вариаций от исходного растения наступает следующий этап — отбор необходимых сочетаний признаков. Данный вопрос решается с помощью клеточной селекции, которую проводят практически на любом объекте, введенном в культуру in vitro. Однако удобнее использовать суспензионную культуру или изолированные протопласты. Преимущество этих объектов состоит в быстром росте культуры и равномерном действии селективного фактора на все клетки. Для отбора сомаклональных вариаций соответствующие селективные факторы (соли в высоких концентрациях, гербициды и др.) добавляют в питательную среду для выращивания культуры клеток либо растущие культуры помещают в селективные условия (низкая или высокая температура, освещенность и т.д.). Существует несколько методов клеточной селекции  [c.187]

    Для отбора клеток, устойчивых к неблагоприятным или стрессовым факторам, наиболее часто применяют прямую селекцию. После выбора нужной популяции необходимо проверить стабильность устойчивости к неблагопрргятному фактору. Это длительный процесс, включающий многочисленные циклы выращивания и пересадки клеток на среды, содержащие селективный фактор или без него. Из стабильных клонов необходимо попытаться регенерировать растения. Получение растений-регенерантов, а также гибридологический анализ подтверждают генетическую природу при- [c.187]

    Метод негативной селекции используется главным образом для выявления мутантов, ауксотрофных в отношении аминокислот, пуриновых и пиримидиновых оснований, витаминов и других важных метаболитов (Ю.Б.Долгих, З.П.Шамина, 1982). Ауксотрофные мутанты очень ценны для фундаментальных исследований механизмов генной регуляции синтеза этих веществ в клетке и в растении. [c.188]

    Технология микроклонального размножения. Обязательное условие клонального микроразмножения — использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют апексы и пазущные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также с негативной селекцией измененных клеток. [c.194]

    Важное свойство мембран состоит в способности небольших участков их поверхности сворачиваться и образовывать структуры, близкие по форме к сферическим. Электронно-микроскопическое исследование водных суспензий фосфолипидов показало, что образуются концентрические многослойные структуры (липосомы). Ультразвук разрушает эти структуры на более мел кие пузырьки, окруженные фоофолп-пидными бислоями, апалогичным и бислоям мембран. При определенных усло1виях маленькие пузырьки сливаются, образуя более крупные. Клетки тоже иногда сливаются друг с другом, образуя полиядерные клетки, что может быть связано, в частности, с повышенной текучестью мембран, а также с изменением ориентации полярных групп фосфолипидов [37]. Это явление имеет важное практическое значение для селекции растений и при изучении хромосом человека (гл. 15). [c.357]

    Результаты этих исследований необходимы как ученым в области растениеводства и животноводства (селекция новых сортов растений, пород животных), так и разработчикам новых методов анализа, контроля сырья и процессов его переработки. Ждет своего решения важная в теоретическом и практическом плане задача — создать квалиметрические модели качества сырья, с помощью которых можно будет определить общие научные принципы стандартизации и сертификации важнейших его видов. Это будет способствовать обеспечению производства экологически безопасных продуктов с высокой пищевой ценностью. [c.1325]

    С начала текуш,его столетия генетики анализируют наиболее видимое проявление индивидума — фенотип. Однако эти исследования ограничиваются тем, что анализируемые различия по большей части передают комплексные морфологические и физиологические характеристики.. Биохимическая генетика — наука, в полной мере развивающаяся с 1960-х годов, дает теперь возможность проводить селекцию не только на фенотип, но и на непосредственные продукты генов — белки. Действительно, если гипотеза Бидла, Татума и Горовица один ген... один фермент сейчас не совсем точна, все равно верно то, что белки и ферменты кодируются дезоксирибонуклеиновой кислотой (ДНК), и это позволяет самым непосредственным образом связать один из фенотипов с определенным генотипом. Именно таким образом корреляции между различиями на уровне генотипа и ферментными вариациями станут очевидными. Около 25 лет тому назад единственные примеры ферментного полиморфизма, которые можно было привести, относились только к микроорганизмам в то время еще полагали, что этот полиморфизм является исключением. При современных знаниях можно констатировать, что биохимический полиморфизм представляет общее явление, свойственное и животным, и растениям. [c.37]

    Биотехнология в значительной мере нацелена на получение с помощью микроорганизмов продуктов, имеющих коммерческую ценность. До эпохи рекомбинантных Д НК самым эффективным методом повышения продуктивности организмов был мутагенез с последующей селекцией оптимального штамма-продуцента. Это длительный, трудоемкий, высокозатратный и небезошибочный процесс, позволяющий улучшить лишь немногие из присущих природному организму свойств. В то же время технология рекомбинантных ДНК - это быстродействующий, эффективный, мощный инструмент, обеспечивающий создание микроорганизмов с заранее заданными генетическими характеристиками. Более того, этот инструмент может работать не только с микроорганизмами, но также с растениями и животными. Союз технологии рекомбинантных ДНК и биотехнологии породил очень динамичную, исключительно интересную дисциплину - молекулярную биотехнологию. [c.22]

    До недавнего времени высокопродуктивные сорта сельскохозяйственных растений и новые породы животных получали методом селекции. Однако этот подход, требующий для своей реализации много времени, уступил место методам, основанным на генной инженерии высших организмов. Теперь гены, обусловливаюгцие специфические признаки, могут вводиться в клетки растений или животных и передаваться следующим поколениям (наследоваться). В ч. III мы рассмотрим, как получаются такие трансгенные растения и животные. [c.371]

    Селекция (Sele tion) 1. Наука о методах создания новых сортов культурных растений и пород животных. [c.559]

    Примечания. Во многих случаях, прежде всего при селекции растений и оценке кормов, бывает достаточно определить содержание лишь метионина и лизина. Метод быстрого анализа позволяет выполнить целую серию ориентировочных опытов. На малой колонке в анализаторе с приведенной выше программой метионин выходит отдельным пиком между пиками валина и изолей-цина, а пик лизина — между пиками аммиака и гистидина. [c.184]


Библиография для Растения селекция: [c.375]   
Смотреть страницы где упоминается термин Растения селекция: [c.146]    [c.205]    [c.496]    [c.295]    [c.518]    [c.498]    [c.185]    [c.186]    [c.188]    [c.200]    [c.150]   
Биохимия Том 3 (1980) -- [ c.269 , c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Селекция



© 2025 chem21.info Реклама на сайте