Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазы мейоза

Рис. 13-17 Жизненные циклы почкующихся дрожжей (Sa haromy es erevisiae) и делящихся дрожжей (S hizosa haromy esротЪе) Доли жизненного цикла, проводимые в гаплоидной и в диплоидной фазе, меняются от вида к виду и в зависимости от условий среды. При обилии пищи нормальные разновидности дикого типа почкующихся дрожжей размножаются как диплоидные клетки с продолжительностью жизненного цикла около двух часов. При голодании же они претерпевают мейоз с образованием гаплоидных спор, которые в благоприятных условиях прорастают, превращаясь в гаплоидные клетки. Эти клетки в зависимости от условий среды и генотипа либо делятся, либо сливаются (конъюгируют) в фазе Gi, вновь образуя диплоидные клетки. Наоборот, делящиеся дрожжи обычно размножаются в гаплоидном состоянии при недостатке пищи гаплоидные клетки сливаются с образованием диплоидных клеток, которые быстро проходят мейоз и споруляцию с восстановлением гаплоидной фазы. Наиболее широко используемые лабораторные штаммы почкующихся дрожжей - это мутанты, которые, Рис. 13-17 <a href="/info/97687">Жизненные циклы</a> почкующихся дрожжей (Sa haromy es erevisiae) и делящихся дрожжей (S hizosa haromy esротЪе) Доли <a href="/info/97687">жизненного цикла</a>, проводимые в гаплоидной и в <a href="/info/509388">диплоидной фазе</a>, меняются от вида к виду и в зависимости от <a href="/info/400180">условий среды</a>. При обилии пищи нормальные разновидности <a href="/info/700379">дикого типа</a> почкующихся дрожжей размножаются как <a href="/info/99342">диплоидные клетки</a> с продолжительностью <a href="/info/97687">жизненного цикла</a> около <a href="/info/1696521">двух</a> часов. При голодании же они претерпевают мейоз с <a href="/info/98257">образованием гаплоидных</a> спор, которые в благоприятных условиях прорастают, превращаясь в <a href="/info/32981">гаплоидные клетки</a>. Эти клетки в зависимости от <a href="/info/400180">условий среды</a> и генотипа либо делятся, либо сливаются (конъюгируют) в фазе Gi, <a href="/info/295768">вновь образуя</a> <a href="/info/99342">диплоидные клетки</a>. Наоборот, делящиеся дрожжи обычно размножаются в <a href="/info/1324679">гаплоидном состоянии</a> при недостатке пищи <a href="/info/32981">гаплоидные клетки</a> сливаются с образованием диплоидных клеток, которые быстро проходят мейоз и споруляцию с восстановлением гаплоидной фазы. Наиболее широко используемые лабораторные штаммы почкующихся дрожжей - это мутанты, которые,

    Биологическая функция мейоза. Благодаря митозу поддерживается постоянство числа хромосом в ряду клеточных поколений. В отличие от митоза мейотический процесс обеспечивает уменьшение (редукцию) диплоидного числа хромосом (46 у человека) наполовину до гаплоидного (23 у человека). При оплодотворении в результате слияния двух гаплоидных половых клеток в зиготе восстанавливается диплоидное число 46, которое сохраняется во всех последующих митотических делениях. В мейозе расхождение гомологичных хромосом в разные половые клетки происходит случайно, что увеличивает генетическую изменчивость. Соматические клетки являются диплоидными (2п), они содержат обе гомологичные хромосомы одной пары, в то время как половые клетки гаплоидны (п) и несут только один гомолог из каждой пары. Последний цикл регулярного синтеза ДНК происходит в интерфазе непосредственно перед первым мейотическим делением и предшествует фазам мейоза, показанным на рис. 2.18. [c.54]

Рис. 1.17. Жизненный цикл и образование гамет у растения. У диплоида в результате мейоза происходит образование спор. Диплоидное растение называется спорофитом гаплоидная фаза, включающая стадию созревания гамет, называется гаметофитом. Гаплоидная фаза может существовать в форме Рис. 1.17. <a href="/info/97687">Жизненный цикл</a> и <a href="/info/98247">образование гамет</a> у растения. У диплоида в результате <a href="/info/1624184">мейоза происходит</a> <a href="/info/1892361">образование спор</a>. <a href="/info/1397695">Диплоидное растение</a> называется спорофитом гаплоидная фаза, включающая <a href="/info/1405428">стадию созревания</a> гамет, называется гаметофитом. Гаплоидная фаза может существовать в форме
    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Пока еще не выяснено, как развиваются события после падения уровня циклического АМР, но в конце концов они приводят к активации белкового комплекса, называемого фактором инициации М-фазы (ФИМ) полагают, что он необходим для выхода из профазы I мейоза. В гл. 13 говорилось о том, что ФИМ крайне мало изменился в процессе эволюции эукариот. Его ключевая роль в обычном цикле клеточного деления обусловлена тем, что он инициирует переход клетки из G2 в М-фазу (см. разд. 13.1.10). Как уже упоминалось, профаза I мейоза, несмотря на свое традиционное название, очень похожа на фазу G2 обычного клеточного цикла ДНК уже реплицировалась и является активной в отношении транскрипции, ядерная оболочка интактна, а митотическое веретено деления еще не сформировалось. Более того, подобно переходу из G2 в М-фазу обычной делящейся клетки, переход от профазы I к М-фазе мейоза запускается ФИМ. В действительности ФИМ был впервые обнаружен в ооцитах лягушки в качестве фактора, инициирующего созревание. Зрелые ооциты лягушки задерживаются на стадии метафазы II, когда уровень ФИМ высок (см. далее). Если небольшую часть цитоплазмы такого зрелого ооцита ввести в незрелый ооцит, то под воздействием содержащегося в инъекции ФИМ нарушится целостность мембраны и начнется конденсация хромосом, т. е. будут наблюдаться эффекты, характерные для М-фазы и свидетельствующие о зрелости ооцита. [c.33]


    В ходе полового цикла клетки размножаются путем обычного митотического деления-чаще всего во время диплоидной фазы. Некоторые простые организмы, например дрожжи, составляют исключение путем митоза у них размножаются только гаплоидные клетки, диплоидная же клетка, образовавшись, сразу переходит к мейозу. У таких относительно примитивных растений, как мхи и папоротники, достаточно развиты обе фазы-и гаплоид- [c.7]

    При наличии механизма конъюгации гомологичных хромосом мейоз мог бы в принципе осуществляться путем видоизменения одного митотического цикла, если бы в нем выпала фаза удвоения хромосом (8) и гомологи спаривались перед фазой М. Тогда в результате следующего клеточного деления могли бы непосредственно образоваться две гаплоидные клетки. Однако на самом деле процесс мейоза более сложен. Перед конъюгацией каждый из гомологов подвергается удвоению, образуя пару тесно связанных сестринских [c.15]

    При мейозе в результате двух последовательных клеточных делений из одной диплоидной клетки образуются четыре гаплоидные. У животных начальные фазы формирования яйцеклетки и сперматозоида сходны. В обоих случаях в мейозе доминирует профаза I, которая может занимать 90% всего времени [c.26]

    Одним из факторов, способствующих такому росту, является то, что у яйцеклеток многих животных завершение мейоза откладывается почти до самого конца созревания, так что эти яйцеклетки содержат удвоенный ди-плоидныи набор хромосом в течение большей части периода их роста. Таким образом, они содержат больше ДНК для транскрипции, чем имеет средняя соматическая клетка в фазе G, клеточного цикла. Кроме того, сохраняя и отцовскую, и материнскую копии каждого гена, яйцеклетки избегают того риска, который создают рецессивные летальные мутации в одном из двух родительских хромосомных наборов если бы яйцеклетке приходилось проводить долгое время в гаплоидном состоянии лишь с одной копией каждого гена, риск был бы очень велик, так как у большинства организмов имеются рецессивные летали. [c.31]

    Следующая фаза развития, называемая созреванием яйцеклетки, начинается лишь с наступлением половой зрелости. Под влиянием гормонов (см. ниже) происходит первое деление мейоза хромосомы снова конденсируются, ядерная оболочка исчезает (этот момент обыкновенно принимают за начало созревания), и реплицированные гомологичные хромосомы расходятся в дочерние ядра, каждое из которых содержит теперь половину исходного числа хромосом (одиако эти хромосомы отличаются от обычных тем, что состоят из двух сестринских хроматид). Но цитоплазма делится очень несимметрично, так что получаются два ооцнта второго порядка, резко различающихся по величине один представлен маленьким полярным тельцем, а другой-большой клеткой, в которой заложены все возможности для развития. И наконец, происходит второе деление мейоза две сестринские хроматиды каждой хромосомы, полученной при первом делении, отделяются друг от друга в результате процесса, сходного с анафазой митоза, с той разницей, что теперь имеется лишь половина обычного диплоидного числа хромосом. После расхождения хромосом цитоплазма большого ооцита второго порядка вновь делится асимметрично, что ведет к образованию зрелой яйцеклетки и еще одного маленького полярного тельца при этом обе клетки получают гаплоидное число одиночных хромосом. Благодаря двум несимметричным делениям цитоплазмы ооциты сохраняют большую величину, хотя они и претерпели два деления мейоза. Все полярные тельца очень малы, и они постепенно дегенерируют. На какой-то стадии описанного процесса, различной у разных видов, яйцеклетка освобождается из яичника (происходит овуляция). [c.29]

    Мейоз состоит из двух последовательных клеточных делений, первое из которых длится почти столько же, сколько весь мейоз, и гораздо сложнее второго (рис. 15-20). Первое деление отличается рядом уникальных особенностей. Например, репликация ДНК во время подготовительной фазы 8, как правило, занимает значительно больше времени, чем при митозе. Кроме того, клетки могут пребывать в стадии мейотической профазы I несколько дней, месяцев и даже лет, в зависимости от вида организма и типа образующихся гамет. (Эта [c.24]

    Митотические и мейотические хромосомы. Как видно из этой таблицы, хромосомы в митозе и в мейозе обнаруживают значительно большую степень спирализации, чем в интерфазе (разд. 2.1.2). Рисунок их сегментации обсуждался в разд. 2.1.2.3. Число субсегментов, которые можно идентифицировать в составе сегментов, зависит от степени конденсации хромосомы (от митотической профазы до метафазы) и качества окрашивания. Это особенно отчетливо можно продемонстрировать при помощи метода преждевременной конденсации хромосом. Верхний предел задается числом хромомер 30 000-100000 нуклеотидных пар в длину (см. ниже [201а]). Учитывая, что число нуклеотидных пар на гаплоидный геном приблизительно равно 3,5 10 , а число сегментов, видимых даже в лучших препаратах, не превышает ж 2 ООО (разд. 2.1.2.3), можно сделать вывод, что нет даже близкого приближения к такому уровню разрешения. Хромосомные сегменты выявляются и во время ранних фаз мейоза. [c.119]


    Следует отметить, что хиазмы представляют собой лищь внешнее проявление кроссинговера, происходящего в более ранних фазах мейоза. Число хиазм сильно варьирует. В некоторых хромосомах их бывает много, в других — только одна. Б это время процесс укорочения бивалентов все еще продолжается при окончательном их формировании хиазмы соскальзывают вдоль хромосом от центромер к концам хроматид. Это явление носит название терминализация хиазм. [c.111]

    Мейоз у цветковых растений протекает в пыльниках и семяпочках во время микро- и мегаспорогенеза. Рассмотрим эти процессы, чтобы научиться практически распознавать все фазы мейоза. [c.197]

    Половое размножение у грибов так же, как у других эукариот, включает слияние двух ядер. Такое слияние ядер у разных грибов происходит через различные промежутки времени после первого контакта между родительскими клетками. В процессе полового размножения можно различить три фазы. Первая фаза плазмогамия связана с соединением двух протопластов. Возникшая в результате этого клетка содержит два ядра. Эта пара ядер (дикарион) не обязательно сливается сразу же. Во время последующих делений клетки могут оставаться в дикариотической фазе. Оба ядра делятся при этом одновременно (сопряженное деление). Лишь позднее, часто только после образования плодового тела, происходит слияние обоих гаплоидных ядер (кариогамия) с образованием диплоидного ядра зиготы. За кариогамией следует мейоз, или редукционное деление, при котором число хромосом умень- [c.56]

    Цикл полового размножения включает чередование гаплоидных поколений клеток, каждая из которых имеет одиночный набор хромосом, с диплоидными поколениями, где клетки обладают двойным хромосомным набором. Смешивание геномов происходит благодаря слиянию двух гаплоидных клеток, из которых образуется одна диплоидная. В свою очередь новые гаплоидные клетки образуются из диплоидных в результате деления особого типа, называемого мейозом, при котором гены двойного набора заново перераспределяются между одиночными наборами (рис. 14-2). Генетичестя рекомбинация хромосом в процессе мейоза приводит к тому, что каждая клетка нового гаплоидного поколения получает новое сочетание генов, происходящих частично от одной родительской клетки предыдущего гаплоидного поколения и частично от другой. Таким образом, благодаря циклам, включающим гаплоидную фазу, слияние клеток, диплоидную фазу и меноз, распадаются старые комбинации генов и создаются новые. [c.7]

    При половом размножении происходит циклическое чередование диплоидного и гаплоидного состояний диплоидная клетка делится путем мейоза, порождая гаплоидные клетки, а гаплоидные клетки попарно сливаются при оплодотворении и образуют новые диплоидные клетки. Во время этого процесса происходит перемешивание и рекомбинация геномов, в результате чего появляются особи с новыми наборами генов. Высшие растения и окивотные большую часть жизненного цикла проводят в диплоидной фазе, а гаплоидная фаза у них [c.14]

    Теперь образование гаплоидных ядер гамет может очень просто происходить в результате второго делеппя мейоза, при котором хромосомы выстраиваются на экваторе нового веретена и без дальнейшей репликации ДНК сестринские хроматиды отделяются друг от друга, как при обычном мнтозе, образуя клетки с гаплоидщ1м набором ДНК. Таким образом, мейоз состоит из двух клеточных делений, следующих за единственной фазой удвоения хромосом, так что из каждой клетки, вступающей в мейоз, получаются в итоге четыре гаплоидные клетки. [c.17]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    Мейоз — редукционное деление процесс ядерного деления, ведущий к образованию гаплоидной фазы, в которой число хромосом уменьшено вдвое по сравнению с диплофазой. В течение мейоза ядро делится дважды, а хромосомы только один раз. Мейоз — необходимая предпосылка очень важного механизма генетической рекомбинации. [c.458]

    В серии сложных опытов фон Борстель [202, 203] изучал время гибели яиц, отложенных девственными самками наездника Вгасоп, гетерозиготными по хромосомным транслокациям. Эти самки откладывали нормально гаплоидные яйца. В процессе мейоза конъюгация хромосом, гетерозиготных по транслокациям, приводит к неравномерному распределению хроматина между мейоти-ческими ядрами. Вследствие этого примерно половина гамет имеет ядра с нехваткой части хромосомного плеча, и половина яиц от такой самки гибнет в результате отсутствия определенных блоков генов. При исследовании 27 различных транслокаций, характерных для случайного отбора проб утраченных блоков генов предположительно из разных частей хромосом, зародыши всегда гибли примерно на середине развития, когда они содержали до 50 тыс. ядер, и уже после того, как происходила эмбриональная дифференциация. Это указывает на то, что начальное развитие зародыша не зависит от наличия всех генов и что гаплоидный зародыш насекомого, образовавшийся из одного ядра с нехваткой довольно значительного блока генов, может дифференцироваться до довольно далекой стадии. Хадорн [80] также изучал фазы развития, когда сказывается влияние летальных мутаций. [c.122]

    Преимагинальные фазы устойчивы к химической стерилизации, потому что нетоксичные дозы, вероятно, не вызовут достаточно сильного повреждения сперматогоний, чтобы привести к аспермии самцов. Эти клетки, выживая при обработке, продолжают делиться и поставляют в зону гермария семенников запасы сравнительно неповрежденных клеток, которые затем могут пройти мейоз и созреть, давая зрелую сперму без доминантных летальных мутаций. Таким образом, выживающие самцы фертильны. Однако из этого [c.149]

    По своему строению дрожжевые клетки во многих чертах сходны с клетками высших организмов они имеют оформленное ядро н другие клеточные структуры, обнаруживаемые в клетках высших организмов. Как и клетки высших организмов, клетки дрожжей проходят в течение времени генерации, характерные 01-,8-,М-и Ог-фазы. В точение вегетативного размножения в дрожжевых клетках протекает процесс, сходный с митозом, а при половом размножении — процесс мейо.эа. Процессы митоза и мейоза у дрожжевых клеток отличаются, однако, от аналогичных процессов у клеток высших организмов рядом особенностей, в том числе тем, что оболочки ядер при этом сохраняются и все процессы, связанные с репликацией и расхождением хромосом, протекают внутри ядерной оболочки. В связи с этим, митоз и мейоз у дрожжей называют иногда эндомитозом и эндомей-озом. [c.3]

    Существенно отличается от митоза мейоз — процесс, приводящий к образованию половых клеток — гамет (рис. 4). Мейоз объединяет в себе два быстро следующих одно за другим деления. Они называются соответственно первым и вторым меиотическими делениями. В каждом из них различаются те же четыре стадии (профаза, метафаза, анафаза и тело-фаза), что и в митозе. Однако эти этапы, и особенно профаза первого мейотического деления (рис. 4, а), протекают в митозе и мейозе по-разному. В ранней профазе первого мейотического деления возникает веретено и в ядре начинают появляться хромосомы (рис. 4, а). Далее гомологичные хромосомы соединяются друг с другом. Этот процесс называют конъюгацией хромосом или синапсисом (рис. 4, б). Затем происходит удвоение соединившихся хромосом, так что образуются пучки из четырех хроматид — биваленты или тетрады (рис. 4, в). Остальные стадии первого деления (рис. 4, г е) протекают так же, как и при митозе, но в анафазе хромосомы в отличие от митоза отходят к полюсам парами (рис. 4, д). После телофазы первого мейотического деления быстро наступает профаза второго мейотического деления, но уже для двух клеток (рис. 4, ж). Далее процесс мейоза идет аналогично митозу — соответственно метафаза и анафаза (рис. 4, 3, и, к). Благодаря двум последовательным делениям возникают [c.12]

    Прорастание ныльцы и частота нарушений хромосом в мейозе у сорта Мадлен Анжевин при обработке ДМС в газовой фазе [c.297]

    Традиционные методы генетического анализа, разработанные Менделем, основаны на переходе из диплоидного состояния в гаплоидное в процессе мейоза. Восстановление диплоидности происходит при оплодотворении. Изменения плоидности обеспечивают сегрегацию генов, то есть их распределение в потомстве. Несколько десятилетий назад было показано, что соматические клетки эукариот можно размножать in vitro, т.е. поддерживать в виде так называемых клеточных культур (рис. 18.1). У этих культивируемых in vitro клеток в норме не происходит смены диплоидной и гаплоидной фаз. Тем не менее существуют различные способы, позволяющие изучать определенные генетические феномены на культурах клеток. Существенным преимуществом клеточных культур является то, что возникновение новой клеточной генерации занимает несколько часов, тогда как появление нового поколения на уровне целой особи-это месяцы или годы. Дополнительное преимущество для изучения генетики человека-это возможность комбинировать наследственные детерминанты клеток в культуре, поскольку проведение направленных скрещиваний между людьми, естественно, невозможно. Недавно были разработаны способы получения гибридных клеток, содержащих наследственную информацию различных видов организма, например человека и мыши. Такие гибриды нельзя получить другими способами, т.е. на уровне целых организмов. [c.290]

    Существенное преимущество растений по сравнению с животными, важное для генетики соматических клеток, заключается в том, что гаплоидные клетки растений можно культивировать in vitro. В процессе онтогенеза всех растений происходит смена гаплоидных и диплоидных фаз. У мхов и печеночников доминирует гаплоидная фаза. Эта фаза, называемая гаметофитом, сохраняется и у высщих растений, хотя у них она сильно редуцирована. В процессе мейоза образуются мужские и женские клетки, которые проходят несколько митотических делений. Диплоидность восстанавливается при оплодотворении. Клетки гаплоидной фазы можно поддерживать в культуре. В такой культуре клеток легко тестировать проявление рецессивных маркеров подобно тому, как это делается при работе с ауксотрофными маркерами бактерий. При использовании соответствующих селективных сред можно проводить скрининг больщих популяций клеток, подбирая условия, при которых способность к пролиферации сохраняют только нужные мутанты. [c.329]

    Для изучения молекул, управляющих хромосомным циклом, особенно полезными оказались эксперименты с яйцами и ранними зародышами шпорцевой лягушки Xenopus. Яйцо Xenopus, как и у многих других видов, представляет собой необычайно крупную сферическую клетку. Ее диаметр составляет чуть больше миллиметра, и она содержит запас практически всех веществ (за исключением ДНК), необходимых для построения раннего эмбриона Все эти вещества запасаются в течение долгого периода роста незрелого яйца, называемого ооцитом Эту длительную стадию лучше всего определить как фазу Ог первого цикла мейотического деления (хотя обычно ее называют профазой первого деления мейоза. она во многих отношениях напоминает обычную фазу Ог-см. разд. 15.2.7). Во время овуляции воздействие гормонов приводит к созреванию яйца, так что к моменту откладки оно успевает уже пройти последующие стадии мейоза и останавливается в М-фазе второго мейотического деления (разд. 15.3.3). Затем оплодотворение запускает чрезвычайно быструю последовательность клеточных делений  [c.403]

Рис. 13-12. Уровни активности М-стимулирующего фактора (MPF, или МСФ) в ооците, яйце и раннем зародыше Xenopus. Ооцит останавливается в фазе Ог мейоза при низком уровне MPF зрелое отложенное яйцо останавливается в фазе М мейоза при высоком уровне MPF после оплодотворения ранний эмбрион проходит чередующиеся фазы S и М при соответственно меняющихся уровнях активности MPF. Рис. 13-12. Уровни активности М-<a href="/info/200648">стимулирующего фактора</a> (MPF, или МСФ) в ооците, яйце и раннем зародыше Xenopus. Ооцит останавливается в фазе Ог мейоза при низком уровне MPF зрелое отложенное яйцо останавливается в фазе М мейоза при высоком уровне MPF <a href="/info/1386491">после оплодотворения</a> ранний эмбрион проходит чередующиеся фазы S и М при соответственно меняющихся уровнях активности MPF.
    В ходе полового цикла клетки размножаются путем обычного митотического деления - чаще всего во время диплоидной фазы (см. разд. 13.5). Исключение составляют некоторые простые организмы, нанример дрожжи (путем митоза них размножаются только гаплоидные клетки, диплоидная же клетка, образовавшись, сразу переходит к мейозу), а также растения, хотя и не в столь яркой форме > последних митотические деления происходят и в гаплоидной, и в диплоидной фазах. При этом у всех растений, за исключегшем наиболее примитивных, гаплоидная фаза очень короткая и простая, тогда как диплоидная представлена длительным периодом развития и роста. Почти у всех многоклеточных животных, и в том числе у всех позвоночных, гаплоидная фаза еще короче. Практически весь свой жизнегшый цикл они проводят в диплоидном состоягши гаплоидные клетки живут очень недолго, огш совсем не делятся и специально приспособлены для полового слияния (рис. 15-3). [c.8]

    Нри наличии механизма конъюгации отцовских и материнских гомологичных хромосом и их последующего расхождения мейоз мог бы в принципе осуществляться путем видоизменения одного митотического цикла, если бы в нем вынала фаза удвоения хромосом (8) и гомологи спаривались перед фазой М. Тогда в результате следующего клеточного деления могли бы непосредственно образоваться две гаплоидные клетки. Однако на самом деле процесс мейоза более сложен. Перед конъюгацией каждый из гомологов подвергается удвоению, образуя нару тесно связанных сестринских хроматид аналогично тому, как это происходит при обычном клеточном делении. Специфические особенности мейоза проявляются лишь после завершения ренликации ДНК. Вместо того чтобы отделиться друг от друга, сестринские хроматиды ведут себя как единое целое (как будто дупликация хромосом не произошла) каждый дуплицированный гомолог конъюгирует с партнером, образуя структуру, состоящую из четырех хроматид и называемую бивалентом. Бивалент раснолагается на экваторе веретена, и в анафазе дуплицированные гомологи (каждый из которых состоит из двух сестринских хроматид) отделяются друг от друга и расходятся к противоположным полюсам причем в каждом из них две сестринские хроматиды остаются соединенными. Таким образом, при нервом делении мейоза каждая дочерняя клетка наследует две копии одного из двух гомологов и поэтому содержит диплоидное количество ДНК. Однако она отличается от обычных диплоидных клеток в двух отношениях 1) обе копии ДНК каждой хромосомы происходят лишь от одной из двух гомологичных хромосом, имевшихся в исходной клетке (хотя, как мы увидим, в результате генетической рекомбинации происходит некоторое неремешивание материнских и отцовских ДНК), и 2) эти две копии клетка получает в виде тесно связанных сестринских хроматид. составляющих единую хромосому (рис. 15-8). [c.15]


Смотреть страницы где упоминается термин Фазы мейоза: [c.175]    [c.205]    [c.187]    [c.125]    [c.81]    [c.193]    [c.266]    [c.60]    [c.26]    [c.29]    [c.72]    [c.226]    [c.19]    [c.7]    [c.14]    [c.16]    [c.25]   
Смотреть главы в:

Практикум по цитологии растений Изд.4 -> Фазы мейоза




ПОИСК







© 2025 chem21.info Реклама на сайте