Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диплоидный

    Большое значение имеет создание гаплоидов, позволяющее ускорить процесс селекции в 2 — 3 раза. Использование гаплоидных клеток и гаплоидных растений способствует обнаружению экспрессии введенного в клетку генома, редких рекомбинаций, рецессивных мутаций, которые в диплоидных растениях, как пра- [c.185]

    Для прокариот характерны гаплоидные ядра, хотя при половой конъюгации бактерий, а также в некоторых экспериментальных условиях образуются частично диплоидные клетки, содержащие двойной набор отдельных генов. [c.18]


    Доказательства генетической роли ДНК в целом неопровержимы. ДНК локализована в хромосомах, причем содержание ДНК в диплоидных (соматических) клетках разных тканей у особей одного и того же вида практически постоянно. В гаплоидных половых клетках количество ДНК вдвое меньше, чем в соматических [22]. Содержание ДНК в клетках удваивается при митозе, т.е. при удвоении хромосом. [c.486]

    Диплоидные клетки большинства высших организмов содержат одну пару хромосом, которые, помимо всего прочего, определяют пол особи. У женщин клетки содержат пару Х-хромосом , а у мужчин — одну Х-хромосому и парную ей короткую, похожую на обрубок Y-хромо-сому . [c.42]

    Гаплоидные и диплоидные клетки [c.42]

    Теперь вакцину Солка не используют, а для вакцинации против полиомиелита используют живую вакцину полиомиелита Се-бина, которую готовят из ослабленных вирусов полиомы и размножают на диплоидных клеточных культурах человека. [c.126]

    Генетическая гетерогенность исходного материала. В растениях клетки характеризуются различной плоидностью, диплоидны только активно делящиеся меристематические клетки. [c.171]

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Половое размножение получает окончательное развитие у эукариот, где рост многоклеточного организма начинается со слияния двух гаплоидных гамет — яйцеклетки и сперматозоида. Каждая гамета несет полный набор генетических инструкций образовавшееся после слияния ядер оплодотворенное яйцо (зигота) является диплоидным. Диплоидная клетка содержит два полных набора генетических матриц, полученных от двух совершенно разных родителей. Это дает развивающемуся организму огромные преимущества. В самом деле, если какой-либо ген, полученный от одного из родителей, окажется дефектным, то весьма мало вероятно, что соответствующий ген от второго родителя будет тоже дефектным. Кроме того, половое размножение — это средство смешивания генов, и каждый из нас получает не просто половину генов от матери и половину от отца, но также какие-то гены от дедушек и бабушек, от прадедушек и прабабушек и т. д. [c.39]


    Процесс клеточного деления, называемый митозом, начинает и завершает клеточный цикл, в ходе которого делится отдельная диплоидная клетка. С биохимической точки зрения митоз представляет собой удвоение числа генетических матриц с последующим формированием из них компактных образований — хромосом. Последние распределяются поровну между двумя новыми клетками (подробно этот процесс описан в гл. 15, разд. Г.9). [c.39]

    Клеточные стенки дрожжей и грибов состоят из глюканов, хитина и маннан-белкового комплекса. Некоторые сильно разветвленные ман-нановые цепи играют роль видоспецифнчных антигенов [118]. Подобно антигенам поверхностей животных и бактериальных клеток, антигены растительных клеток характеризуются огромным структурным многообразием, что имеет важное значение для медицины. Удобным объектом для изучения генетических аспектов биосинтеза ферментов, участвующих в синтезе маннанов, являются дрожжи. Их можно выращивать как в гаплоидных, так и в гибридно-диплоидных формах, что значительно облегчает генетический анализ. [c.397]

    Если хромосомы (и хроматин) состоят на 15% из ДНК, то чему равна масса 23 пар хромосом в диплоидной клетке человека Если диаметр ядра равен 5 мкм и плотность 1,1 г-см , то какая часть ядра по весу приходится на долю хроматина  [c.65]

    Это представление подтверждается существованием стволовых клеток, сохраняющих некоторые черты эмбриональных клеток при каждом делении стволовой клетки образуется новая стволовая клетка плюс дифференцированная клетка. Последнее явление трудно объяснить только как реакцию на химические сигналы из окружающей среды. Согласно некоторым наблюдениям, клетки животных обладают ограниченным потенциалом деления [176, 177]. Например, нормальные диплоидные фибробласты человеческого эмбриона при выращивании в культуре делятся примерно 50 10 раз, после чего погибают независимо от условий культивирования. Фибробласты, полученные от людей старшего возраста, погибают после меньшего числа клеточных деле яйй. АнаЛОгнтаым йбразом быс трее norti6atdlf в культуре клетки жи- [c.360]

    Вирусная частица содержит две молекулы геномной РНК таким образом, редкой (если не уникальной) особенностью ретровирусов является диплоидность их генома. [c.309]

    ПП в кластерах распределены равномерно 2) в начальный омент в геномах всех особей популяции кластеры идентичны и аждый ПП кластера окружен ФП (идентичными для данного ПП но тличными от ФП, окаймляицих другие ПП) 3) наличие незави-имых транспозиций ПП, когда каждый ПП кластера имеет опре-еленную вероятность выщепления из генома также возможно страивание в кластер новых ПП 4) число потенциальных сайт-в встраивания ПП в кластере ограничено ь) популяция состо-т из N диплоидных особей. [c.79]

    В модель заложены следующие предположения рассматрива Тея диплоидная панмиксическая популяция численностью N ка- [c.83]

    Частичный перенос хромосомы из мужской клетки приводит к тому, что Р -клетка становится частично диплоидной (мерозигота), т. е. содержащей двойной набор многих генов. В такой частично диплоидной клетке между двумя хромосомами происходит обмен генетической информацией (генетическая рекомбинация) (рис. 15-2). Химические реакции, лежащие в основе этого процесса, имеющего важное значение для всех организмов, размножающихся половым путем, мы рассмотрим в разд. Ж- В конечном счете рекомбинационный процесс приводит к тому, что дочерние клетки, образовавшиеся при последующем делении, содержат только одну хромосому с обычным числом генов. Однако некоторые гены попадают в эту хромосому от каждого из родительских штаммов. Таким образом, может случиться, что клетка Р мутантного штамма, неспособная расти на среде без определенных питательных добавок, получит ген из мужской клетки, который позволит ей расти на минимальной среде. Хотя число таких рекомбинантных бактерий мало, тем не менее их легко можно отобрать из очень большого числа исходна смешанных мутантных бактерий. [c.191]

    Диплоидная клетка в конце мито-тияёскаго деления. Показанл1 две парь/ хромосом. Отцовские ц материнские хромосомы окрашены по-разному [c.266]

    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]


    В хромосоме Е. oli содержится ДНК длиной больше 1 мм, упакованная в клетке, длина которой пе превышает 2 мкм. Длина диплоидной ДНК, содержащейся в клетках человека, размер которых не превышает 20 мкм, достигает 1,5 м. Расплетание двойных спиралей ДНК в репликационных вилках требует быстрого вращения цепей (разд. А, 3,а). Хотя с чисто химической точки зрения процесс расплетания 3000 оснований за одну секунду не представляет проблемы, все же трудно представить себе, как две копии реплицируемой хромо-со.мы даже в клетках Е. oli могут разделяться, не запутываясь. Частично ответить на этот вопрос можно, если вспомнить о существовании ДНК-расплетающпх белков (разд. Д, 5, в), а также ДНК-релаксирую-щих , или раскручивающих , ферментов [185, 186] (см. также рис. 2-27). Важную роль играет при этом также организация хромосомы. [c.271]

    ГЕНОМ, совокупность генов, локализованных в гаплоидном наборе хромосом данного организма. Половые клетки (т. наз. гаплоидные) содержат один Г., соматич. клетки высших организмов (т. наз. диплоидные)-два один Г. отцовский, другой - материнский. [c.519]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    По всей вероятности, доминирование диплоидной фазы у высших растений и животных обусловлено способностью гетерозиготы выживать даже при возникновении одной или нескольких крайне вредных мутаций. Для ученых, занимающихся биохимической генетикой, использование гаплоидных организмов дает огромные методические преимущества, лозволяя с легкостью выявлять рецессивные мутации. [c.43]

    Дрожжи — это грибы, приспособившиеся к существованию в среде с высоким содержанием сахара они остаются обычно одноклеточными и размножаются путем почкования (рис. 1-8). Время от времени их гаплоидные клетки попарно сливаются и образуют диплоидные клетка и половые споры. Одни дрожжи относятся к аскомицетам, другие — к базидиомицетам. Sa haromy es erevisiae, активное начало как пекарских, так и пивных дрожжей, является аскомицетом, способным к неог-. раниченному росту как в диплоидной, так и гаплоидной фазе, причец диплоидные клетки несколько крупнее гаплоидных [37]. [c.47]

    ЭТИМ животные клетки. Диплоидной является только зигота. С другой стороны, клетки на редкость красивой спирогиры (Spirogyra) (рис. 1-9) неподвижны, а амебоидная мужская гамета продвигается по трубочке, соединяющей две спаривающиеся клетки. Такая особенность размножения указывает на связь спирогиры с высшими зелеными растениями. [c.49]

    Некоторые одноклеточные водоросли достигают значительных размеров. Примером может служить Асе1аЬи1аг1а (рис. 1-9), произрастающая в теплых водах Средиземноморья и других тропических морей. Клетка этой водоросли содержит одно ядро, расположенное в ее основании (ризоиде). У взрослой водоросли, жизненный цикл которой длится от 6 месяцев (в лабораторных условиях) до 1 года (в природе), формируется характерного вида вырост (шляпка). По завершении развития этого образования ядро делится примерно на Ю вторичных ядер, которые мигрируют вверх по стебельку и в радиальные лучи шляпки, где образуются цисты. Затем шляпка отмирает и цисты высвобождаются в них происходит мейоз, и образовавшиеся жгутиковые гаметы попарно сливаются, формируя зиготу, из которой вновь вырастает диплоидная водоросль. [c.49]

    Гаплотип (Haplotype) Комбинация аллелей на одной хромосоме диплоидного организма. [c.546]

    Ядерное клонирование (Nu lear loning) Получение живого организма из безъядерной яйцеклетки с вживленным диплоидным соматическим ядром. [c.565]


Смотреть страницы где упоминается термин Диплоидный: [c.85]    [c.104]    [c.186]    [c.39]    [c.41]    [c.43]    [c.45]    [c.61]    [c.228]    [c.259]    [c.85]    [c.104]    [c.98]    [c.228]    [c.259]    [c.354]    [c.25]    [c.201]   
Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.199 , c.200 ]




ПОИСК







© 2025 chem21.info Реклама на сайте