Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митотическое деление

Рис. 14-28. Различные стадии оогенеза. Из первичных половых клеток, мигрирующих в янчник на ранней стадии эмбриогенеза, развиваются оогонии. После ряда митотических делений оогонии приступают к первому делению мейоза, и иа этой стадии их называют уже ооцитами первого порядка. У млекопитающих ооциты первого порядка формируются очень рано и остаются на стадии профазы I до тех пор, пока самка не достигнет половой зрелости. После этого под влиянием гормонов периодически созревает небольшое число ооцитов, которые завершают первое деление мейоза и превращаются в 00Щ1ТЫ второго порядка последние претерпевают второе деление мейоза и становятся зрелыми яйцеклетками. Стадия, на которой яйцеклетка выходит из яичника и оплодотворяется, у разных животных различна. Рис. 14-28. <a href="/info/711387">Различные стадии</a> оогенеза. Из <a href="/info/510394">первичных половых</a> клеток, мигрирующих в янчник на <a href="/info/1328681">ранней стадии</a> эмбриогенеза, развиваются оогонии. После ряда <a href="/info/101309">митотических делений</a> оогонии приступают к <a href="/info/1355109">первому делению мейоза</a>, и иа этой стадии их называют уже ооцитами <a href="/info/891867">первого порядка</a>. У млекопитающих ооциты <a href="/info/891867">первого порядка</a> формируются очень рано и остаются на стадии профазы I до тех пор, пока самка не достигнет половой зрелости. После этого под <a href="/info/191134">влиянием гормонов</a> периодически созревает небольшое число ооцитов, которые завершают <a href="/info/1355109">первое деление мейоза</a> и превращаются в 00Щ1ТЫ <a href="/info/136639">второго порядка</a> последние претерпевают <a href="/info/1355105">второе деление мейоза</a> и становятся зрелыми яйцеклетками. Стадия, на которой яйцеклетка выходит из яичника и оплодотворяется, у <a href="/info/627457">разных животных</a> различна.

Рис. 2.2. Схема митотического деления диплоидной клетки. Ядро содержит по две хромосомгы каждого вида, полученные от родителей (на схеме-красные и черные). В результате митоза хромосомы распределяются поровну между обеими дочерними клетками. А. В профазе становятся видимыми уже продольно расщепившиеся хромосомы ядерная оболочка исчезает. Б. В метафазе хромосомы располагаются в экваториальной плоскости. В. В анафазе половинки расщепившихся хромосом оттягиваются нитями веретена к противоположным полюсам. Г. В телофазе дочерние хромосомы, вновь продольно расщепившиеся, окружаются ядерной мембраной, после чего ядро переходит в интерфазное состояние. Рис. 2.2. Схема <a href="/info/101309">митотического деления</a> <a href="/info/99342">диплоидной клетки</a>. Ядро содержит по две хромосомгы <a href="/info/1771895">каждого вида</a>, полученные от родителей (на <a href="/info/1225448">схеме-красные</a> и черные). В результате <a href="/info/1413542">митоза хромосомы</a> распределяются поровну между обеими <a href="/info/510275">дочерними клетками</a>. А. В профазе становятся видимыми уже продольно расщепившиеся <a href="/info/1413876">хромосомы ядерная</a> оболочка исчезает. Б. В <a href="/info/1304929">метафазе хромосомы</a> располагаются в <a href="/info/105755">экваториальной плоскости</a>. В. В анафазе половинки расщепившихся хромосом оттягиваются <a href="/info/1088934">нитями веретена</a> к противоположным полюсам. Г. В телофазе <a href="/info/99440">дочерние хромосомы</a>, вновь продольно расщепившиеся, окружаются ядерной мембраной, после чего <a href="/info/1318079">ядро переходит</a> в интерфазное состояние.
    Обоснованно принято считать, что большинство многоклеточных растений и животных начинает жизненный цикл с одной клетки - зиготы (оплодотворенного яйца). В результате многократных митотических делений из этой клетки возникает сложный, высокодифференцируемый организм. Этот процесс называют ростом и развитием. При этом упомянутый процесс включает дифференци-ровку. В результате дифференцировки клетка приобретает определенную структуру и, размножаясь, производит себе подобные. Так, в многоклеточном организме возникают различные ткани (органы) и происходит формирование сложного организма. Как полагают, причина этого явления не ясна [30]. Однако рост и развитие, несомненно, связаны с индукцией и репрессией генов. Считают, что дифференцировка проявляется через сложные взаимодействия между ядром, цитоплазмой и окружающей средой клетки. В литературе обсуждены различные этапы механизма дифференцировки. Их, естественно, весьма много [30, 31]. [c.22]

    Оплодотворенное (активированное) яйцо или яйцеклетка претерпевает несколько митотических делений, ие сопровождающихся общим увеличением объема. Этот процесс носит название дробления. Число клеток при этом увеличивается, количество ДНК удваивается при каждом делении, но общий объем образовавшегося клеточного скопления остается равным исходному объему яйцеклетки до дробления (рнс. 16-13). Вскоре процесс достигает стадии, при которой образуется внутренняя полость, окруженная одним слоем клеток (называемых на этой стадии бластомерами) это так называемая бластула. У морских ежей бластула образуется нз одного слоя клеток, но у других организмов, например у лягушки, клетки располагаются двумя и более слоями. У млекопитающих прежде всего формируется плотная масса клеток (морула), которая далее превращается в бластоцит, т. е. сферическое образование с внутренней полостью. [c.356]


    В ходе полового цикла клетки размножаются путем обычного митотического деления-чаще всего во время диплоидной фазы. Некоторые простые организмы, например дрожжи, составляют исключение путем митоза у них размножаются только гаплоидные клетки, диплоидная же клетка, образовавшись, сразу переходит к мейозу. У таких относительно примитивных растений, как мхи и папоротники, достаточно развиты обе фазы-и гаплоид- [c.7]

    Диплоидные ядра содержат по две копии каждой хромосомы (это не относится лишь к половым хромосомам), одна из которых происходит от мужского родителя, а другая-от женского. Эти две копии называются гомологами. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе (их называют сестринскими хроматидами). Сестринские хроматиды выстраиваются в экваториальной плоскости веретена таким образом, что их кинетохорные волокна направлены к противоположным полюсам. В результате сестринские хроматиды в анафазе отделяются друг от друга и каждая дочерняя клетка наследует по одной копии каждого гомолога (см. рис. 11-41). Но Гаплоидные гаметы, образовавшиеся при делении диплоидной клетки путем Мейоза, должны содержать лишь по одному гомологу каждой пары. В связи с этим к аппарату клеточного деления здесь предъявляется дополнительное требование гомологи должны иметь юзможность узнавать друг друга и соединяться в пары, перед тем как они выстроятся на экваторе веретена. Такое спаривание, или конъюнгация, гомологичных хромосом материнского и отцовского происхождения происходит только в мейозе. [c.15]

    В процессе митотического деления хорошо различимы несколько фаз. В течение первой фазы, или профазы, в ядре появляются нитевидные структуры, хроматиды, а ядрышко исчезает. Эти хроматиды в конечном итоге путем сокращения и скручивания формируют интенсивно базофильные компактные хромосомы. В течение этой фазы центросомы, расположенные вне ядра, делятся на две половины, которые расходятся к противоположным сторонам ядра. Ядерная мембрана и ядрышко исчезают, возникает структура, называемая веретеном. Она состоит из тонких нитей, расходящихся от каждой центросомы к экватору веретенообразной фигуры. В течение метафазы хромосомы выстраиваются у экватора веретена, и каждая из них делится на две равные части, которые на протяжении анафазы расходятся к противоположным полюсам веретена. В результате этого процесса каждая дочерняя клетка получает тот хромосомный материал, который имелся у материнской клетки. В течение последней фазы деления— телофазы — образуются новые ядра. При этом из каждой группы дочерних хромосом, теряющих свои очертания, формируется хроматин нового ядра одновременно образуются новая ядерная мембрана и ядрышко. [c.135]

    Однако первым повреждением не всегда является разрыв хромосомы. Имеется много и других путей воздействия химикатов на генетический материал. Одна из таких возможностей также показана на рисунке 1. Хемостерилизатор, например, может реагировать с веществом хромосом, вызывая скрытые (латентные) повреждения, которые не воспроизводятся при удвоении. Этот тип повреждений также приводит к образованию хромосомных мостов и неравному распределению генетического материала при последующих делениях. Наиболее заметным результатом разрыва хромосом в ядрах сперматозоидов или яйцеклеток является нарушение равновесия хромосомы при дроблении зиготы. Если самцы обработаны хемостерилизатором, в результате чего во всех сперматозоидах появились доминантные летальные мутации (бесплодие), то хромосомные отклонения могут быть обнаружены почти во всех развивающихся зародышах. На рисунке 2 показаны некоторые хромосомные отклонения в зародышах комнатной мухи в результате оплодотворения нормального яйца спермой, обработанной хемостерилизатором. Результаты повреждения хромосом подобного рода были описаны и обсуждены ранее [116]. Гибель зародыша связывают со снижением скорости митотического деления у развивающегося зародыша и полным прекращением митоза, часто происходящим при втором или третьем дроблении. Это замедление скорости митоза может быть связано с наличием хромосомных мостов (рис. 2), но гибель зародышей обусловлена не только недостатком некоторых частей хромосом в каком-либо из полученных при дроблении ядер, а, возможно и прогрессирующей генетической несбалансированностью в ядрах клеток зародыша. [c.120]

    Изменения ДНК в ходе митотического деления [c.309]

    А. Меристема корня бобов [92]. Б. Костный мозг человека [93]. В. Асцитный рак Эрлиха у мыши [94]. Цифры на рисунке показывают время в часах. Общая продолжительность митотического цикла составляет 30 час ( ) 40—45 час (Б) и 18 час (В). В — митотические деления 8 — включения изотопа в ДНК 01 и Оз — периоды ранней и поздней интерфазы, в течение которых ДНК ие включает метку. [c.312]

    Для выявления действия того или иного мутагенного фактора важным показателем является количество перестроек хромосом в первом митотическом делении. [c.262]

    РИС. 15-26. Митоз. На рисунке показана схема митотического деления клетки с одной гомологичной парой хромосом (Mazia D., S i. Am., 205, 101—120, Sept. 1961). [c.265]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]


    Семена растений состоят из трех четко различающихся частей. Зародыш развивается из зиготы, образованной в результате слияния ядра спермия, происходящего из пыльцевой клетки, с ядром яйцеклетки. Оплодотворенная яйцеклетка у голосеменных окружена питательным слоем, или эндоспермом, происходящим из той же гаметофитной ткани, что и яйцеклетка, и потому гаплоидным. У покрытосеменных в спермин формируются два ядра одно из них оплодотворяет яйцеклетку, тогда как другое сливается с двумя гаплоидными полярными ядрами, образующимися в женском гаметофите. (Эти полярные ядра формируются в ходе того же митотического деления, при котором образуется яйцеклетка.) В результате развивается триплоидный (Зп) эндосперм. [c.63]

    Размножение возможно н без полового процесса. Например, амебы размножаются простым митотическим делением гидра производит потомков, сгг-почковьшая их от средней части своего тела (рис. 14-1) актинии и некоторые морские черви делятся на две половинки, каждая из которых регенерирует недостающую часть организма. Такого рода бесполое размножение-процесс весьма несложный, но он не ведет к образованию новых форм все потомство генетически идентично родительскому организму. В отличие от этого при половом размножент происходит смешивание геномов двух разных особей данного вида, и образующиеся в результате потомки обычно генетически отличаются друг от друга и от обоих родителей. Половое размножение, приводящее к генетическому разнообразию, по-видимому, имеет большие преимущества, так как оно свойственно подавляющему большинству растений и животных. Даже у многих прокариот н одноклеточных эукариот выработалась способность к размножению половым путем. В этой главе мы познакомимся с клеточным аппаратом полового размножения но прежде чем переходить к подробностям, мы рассмотрим причины возникновения этого аппарата и генетические последствия его функционирования. [c.7]

    В 1923 г. Гурвич сообщил об открытии митогенетических лучей, испускаемых клетками при их митотическом делении и, в свою очередь, стимулирующих митозы. Продолжавшиеся в течение ряда лет попытки обнаружить это излучение точными физическими методами не привели к успеху. Существование мито-тенетических лучей не подтвердилось, их изучение поэтому давно оставлено. Равным образом ложны сообщения об ультрафиолетовых излучениях при гибели клеток и прн иных биологических процессах. [c.148]

    У млекопитающих после проникновения сперматозоида в яйцеклетку ядро спермия (мужской пронуклеус) и ядро яйцеклетки существуют раздельно. После того как последнее заканчивает митотическое деление и становится женским проггуклеусом, может произойти слияние ядер (кариогамия). Мужской пронуклеус обычно гораздо больше женского, его легко локализовать с помощью секционного микроскопа и ввести в него чужеродную ДНК. При этом яйцеклетку на время проведения микроинъекции можно перемещать, ориентировать нужным образом и фиксировать. Опытный экспериментатор за день может инокулировать несколько сотен яйцеклеток. [c.421]

    Клеточный цикл эукариотических клеток, подвергающихся последовательным митотическим делениям, состоит из двух основных периодов. Первая стадия, называемая интерфазой, заключается в накоплении химических соединений необходимых для деления. Обычно в интерфазе выделяется две фазы С и 8 6-фаза создает предпосылки, необходимые для последующего деления. Во время фазы 8 происходит репликация и, таким образом, все хромосомные ДНК появляются в виде двух идентичных двуцепочечных копий. За интерфазой после короткой промежуточной фазы начинается митоз. Первая фаза митоза (профаза) заключается в образовании двух четко очерченных дочерних хромосом, соединенных в их центральной части — центрамерном районе. Эти структуры называют хроматидами. Необходимо отметить, что конденсация происходит одновременно с разрушением ядерной мембраны. После образования хроматид на следующей стадии (метафазе) они движутся к середине делящейся клетки и собираются все на одной плоскости. На этой стадии хромосомы теряют все мембранное окружение. Потом все пары начинают разделяться, двигаясь к полюсам материнской клетки (анафаза). Как только хромосомы собираются у соответствующих полюсов, начинается их деконденсация. Это сопровождается сборкой новых ядерных мембран и образованием двух новых ядер (телофаза). Конечная стадия митоза заключается в разделении цитоплазмы и, соответственно, образовании двух разделенных дочерних клеток. [c.25]

    ОТ отца, а другая-от матери. П )и нормальном митотическом делении материнская и отцовская хромосомы не обмениваются генетическим материалом, и поэтому каждая из дочерних клеток получает от родителей полный ин-такгный набор отцовских генов и такой же набор материнских. В норме обмен генами между материнским и отцовским гомологами происходит только в половых клетках при кроссинговере во время мейоза. Иногда, однако, кроссинговер между гомологами происходит и при делении обычных соматических клеток. Это называют митотической рекомбинацшей. Если материнская и отцовская хромосомы обмениваются идентичными участками, т.е. если клетка по этим участкам гомозиготна, то такой обмен остается незамеченным. Но если обмениваться будут участки, по которым клетка гетерозиготна, то может возникнуть выраженный фенотипический эффект. В результате рекомбинации могут, например, появиться дочерние клетки, имеющие различную пигментацию, и тогда при дальнейшем размножении эти клетки образуют участки ткани разного цвета. Механизм этого иллюстрируют схемы на рис. 15-33, где показано, как после единичного акта митотической рекомбинации на фоне нормальных клеток может появиться двойное пятно, образованное двумя клонами клеток с различными генетическими маркерами. [c.83]

    У некоторых видов клетки-кормилицы происходят из той же оогонии, из которой образуется соединенный с ними ооцит. Например, у эмбриона Drosophila оогония претерпевает четыре митотических деления, в результате которых образуются 16 клеток. Одиа из этих клеток становится яйцом, а другие превращаются в клетки-кормилицы и остаются соединенными друг с другом и с яйцом цитоплазматическими мостиками (рис. 14-30). В клетках-кор-милицах происходит многократная репликация ДНК без деления самой клетки, поэтому каждая клетка постепенно достигает очень больших размеров, а количество ДНК в ней в тысячу раз превосходит обычную величину (такая ДНК находится в политенных хромосомах см. разд. 8.1.12). Все 15 клеток-кормилиц, содержащих сотни или тысячи эквивалентов генома, синтезируют вещества, необходимые для одной-единственной яйцеклетки. [c.31]

    Спермий (сперматозоид) в высокой степени специализирован для функции внесения своей ДНК в яйцо. Это маленькая и компактная клетка с необычайно сильно сконденсированным ядром и длинным жгутиком. Сперматогенез отличается от оогенеза в нескольких важных отношениях. Во-первых, в то время как у многих организмов весь пул ооцитов образуется еще на ранней стадии эмбрионального развития самки, у самцов после наступления половой зрелости в мейоз непрерывно вступают все новые и новые половые клетки. Во-вторых, если из каждого ооцита первого порядка образуется лишь одна зрелая яйцеклетка (а три остальных гаплоидных ядра, образовавшихся в мейозе, дегенерируют ), то каждый сперматоцит первого порядка дает начало четырем зрелым спермиям. В-третьих, поскольку при митотическом делении зрелых сперматогоний в мейозе всех спермапюцитов цитокинез не доводится до конца, потомки одной сперматогонии развиваются в виде синцития, сохраняя непрерывность цитоплазмы на протяжении всего развития. В связи с этим дифференцировка спермия может контролироваться продуктами хромосом от обоих родителей, хотя спермий в отличие от яйцеклетки проходит конечные этапы развития в гаплоидном состоянии. [c.40]

    К моменту вьшупления личинки в ее организме имеются две первичные половые клетки, нз которых в дальнейшем образуется около 2000 клеток, заполняющих гонаду взрослой особи. Вблизи дистального конца гонады продолжается образование первичных половых клбток путем митотических делений, в то время как в остальной части гонады они вступают в мейоз (рис. 15-68). Пролиферирующие клетки дистального конца, подобно сперматогониям у самцов млекопитающих, играют роль стволовых клеток, восполняющих убыль гамет, по мере того как те созревают и используются для размножения. [c.118]

    Внутреннее содержимое ядра нуклеоплазма), видимо, определенным образом организовано. Обычно в нем можно различить обособленное, более плотное сферическое тельце (или несколько таких телец), называемое ядрышком. Ядрышки особенно богаты РНК основная масса ядерной РНК (составляющая 10—20% всей клеточной РНК) локализована, по-видимому, именно в них. Почти вся клеточная ДНК (около 95%) заключена в ядре и распределяется по нуклеоплазме в виде хроматина в период, когда клетка находится в покоящемся состоянии , т. е. когда все процессы — в проме кутке между двумя делениями — направлены на поддержание жизнедеятельности и рост. Непосредственно, перед делением хроматин конденсируется, образуя высокоупорядоченные дискретные линейные структуры, так называемые хромосомы. Число хромосом, приходящееся на соматическую клетку, постоянно, и этот набор хромосол в результате митотического деления передается дочерней клетке. [c.243]

    В неделящихся диплоид ых соматических клетках высших организмов количество ДНК и ее нуклеотидный состав постоянны (для данного вида). Количество ДНК возрастает в процессе митотического деления, но возвращается к исходной величине в дочерних клетках. Гаплоидные половые клетки (гаметы) содернлат половинное количество ДНК того же нуклеотидного состава. [c.484]

    Аскоспора—продукт мейоза у некоторых грибов (Азсо-тусе1ез). В мейозе образуются 4 гаплоидных ядра, которые после митотического деления дают 8 аскоспор. Эти споры заключены в асках. [c.451]

    Ядра гаплоидных к.теток, например клеток из пыльцевых зерен, содержат, конечно, вдвое меньше ДНК, чем диплоидные ядра соматических клеток. Ясно также, что некоторые соматические клетки бывают тетраилоидными или обладают еще большей степенью плоидпости. Это справедливо для клеток корневых клубеньков бобовых и во многих случаях для тканей каллуса. То обстоятельство, что перед делением клетки в интерфазе происходит удвоение ядерной ДНК, затрудняет демонстрацию постоянства содержания ДНК в ядре. Совершенно закономерно, что в тканях с энергичным клеточным делением мы обнаружим тетранлоид-ные ядра, которые на самом деле готовы к очередному митотическому делению. [c.520]

    На следующей затем стадии диплонемы (от греческого диплоос — двойной) хромосомы, располагавшиеся до сих пор попарно, расходятся. Одновременно они еще сильнее укорачиваются. Теперь, как только распадется еще и клеточная мембрана, наступает стадия диакинеза (от греческого диакинейн — проходить сквозь, проникать). Профаза мейоза тем самым закончена. Последующие метафаза и анафаза аналогичны таковым при митотическом делении. [c.124]

    Однако подобный жизненный цикл ни в коем случае не является правилом. Многие растения, почти все животные и, конечно, человек — диплобионты у них оплодотворенная яйцеклетка претерпевает митотическое деление и, следовательно, все клетки развившегося из нее организма будут диплоидными, т. е. будут содержать двойной набор хромосом. Лишь при формировании половых клеток происходит, наконец, мейоз, так что гаметы (и только они), т. е. неонлодотворенные яйцеклетки и сперматозоиды, гаплоидны уже продукты их слияния снова диплоидны. Таким образом, здесь мейоз и слияние гамет чередуются как раз в обратном порядке (рис. 52). [c.136]

    Однако наибольшую известность планарии получили из-за своей прямо-таки невероятной способности к регенерации если перерезать пла-нарию поперек, то головной конец отращивает новый хвост, а хвостовой конец восстанавливает новую голову. Правда, в обоих случаях для этого требуется примерно месяц, но зато в результате получаются две новые совершенно нормальные планарии. Так как регенерация происходит за счет митотического деления клеток, то оба животных генетически абсолютно идентичны. Эта способность к регенерации была использована в первых экспериментах но передаче памяти . Одну планарию обучали выполнять определенный номер, затем разрезали ее и после регенерации испытывали, помнят ли свои уроки оба животных, одно из них или же никто Однако как столь примитивные существа могут вообще чему-нибудь научиться Выяснилось, что научить их кое-чему все-таки удается, хотя и не без труда. [c.309]

    Тот же процесс, по современным представлениям, лежит в основе деления клеток давно известным процессом, называемым в биология митозом или кариокинезом. Этот процесс состоит в том, что в ядре клетки обособляются видимые под микроскопом шпилькообразные хромосомы, состоящие из ДНК. Каждая расщепляется вдоль на две половишь, они расходятся в два противоположных конца клетки и каждая половина дополняется до полной хромосомы. Затем клетка делится стенкой ма две, и попавшие в каждую новую клетку хромосомы снова образуют ядро. Нетрудно видеть, что процесс редупликации хромосом имеет в своей основе только что описанный процесс редупликации нитей ДНК. Принимая во внимание, что каждый организм начинает свою жизнь с одной клетки, очевидно, что каждая клетка многоклеточного организма в результате митотического деления получила полный набор хромосом и, значит, полный набор ДНК исходной клетки. Если последняя произошла от слияния отцовской и материнской клеток (каждая из них имеет лишь половинный набор хромосом), то в результате каждая клетка организма получида половину хромосом (и ДНК) по отцовскому типу, а половину — по материнскому. [c.686]


Библиография для Митотическое деление: [c.43]   
Смотреть страницы где упоминается термин Митотическое деление: [c.356]    [c.379]    [c.51]    [c.60]    [c.168]    [c.29]    [c.161]    [c.453]    [c.96]    [c.435]    [c.77]    [c.105]    [c.116]    [c.136]    [c.141]    [c.697]    [c.737]   
Биохимия нуклеиновых кислот (1968) -- [ c.135 , c.309 ]

Генетика человека Т.3 (1990) -- [ c.62 ]

Цитология растений Изд.4 (1987) -- [ c.74 , c.75 , c.94 , c.99 , c.113 , c.122 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Делении

Митоз митотическое деление

Митотическое деление, задержка

Сложный митотический процесс высших организмов - это результат постепенного совершенствования механизма деления прокариот

также Клеточное деление Митотическое

также Клеточное деление Митотическое веретено



© 2025 chem21.info Реклама на сайте