Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии как клетка

    Параметры процесса брожения выбирают исходя из оптимальных условий жизнедеятельности дрожжевых клеток и подавления развития их спутников — кислотообразующих бактерий молочнокислого и уксуснокислого брожения. Оптимальные температуры размножения дрожжевых клеток и развития бактерий практически совпадают. Чтобы подавить развитие бактерий повышают кислотность среды, вводя в гидролизат серную или молочную кислоты. При рН<4,2 дрожжевые клетки интенсивно растут, а бактерии не размножаются. Поэтому в производстве процесс брожения проводят при температуре 27— 30°С, атмосферном давлении и в слабо кислой среде (pH = 3,8— 4,0). [c.280]


    У бактерий чрезвычайно сильно выражена снособность адаптации к различным условиям окружающей среды. Она проявляется в выработке адаптированных ферментов, что позволяет бактериальной клетке использовать в качестве источника сырья разнообразные вещества. Способность микроорганизмов к адаптации обеспечивает широкое распространение биологической очистки сточных вод. [c.100]

    В зависимости от источника питания различают бактерии ав-тотрофы и гетеротрофы. Автотрофные организмы утилизируют и окисляют минеральные соединения, гетеротрофные организмы используют в качестве источника энергии и биосинтеза клетки готовые органические вещества, находящиеся в сточной воде. Механизм биологического окисления в аэробных условиях (в присутствии растворенного кислорода) гетеротрофными бактериями может быть представлен следующей схемой [55]  [c.146]

    Подобно бактериям, клетки высших растений и животных часто покрыты внеклеточным материалом. Так, растительные клетки имеют жесткую стенку, содержащую в большом количестве целлюлозу и другие полимерные углеводы. Клетки, расположенные на наружных поверхностях растений, бывают покрыты восковым слоем. Клетки животных снаружи обычно защищены гликопротеидами — комплексами углеводов со специфическими белками клеточной поверхности. Пространство между клетками заполнено такими цементирующими веществами , как пектины у растений и гиалуроновая кислота у животных. Нерастворимые белки —коллаген и эластин — секретируются клетками соединительной ткани. Клетки, лежащие на поверхности (эпителиальные или эндотелиальные), нередко граничат с другой стороны с тонкой, содержащей коллаген базальной мембраной (рис. 1-3). Часто в результате совместного действия клеток различного типа происходит отложение неорганических соединений — фосфата кальция (в костях), карбоната кальция (скорлупа яиц и спикулы губок), окиси кремния (раковины Диатомовых водорослей) и т. п. Таким образом, обмен веществ в значительной мере протекает вне клеток. [c.37]

    Капсула. У многих кокковых, палочковидных и некоторых нитчатых бактерий клетка как бы обволакивается сверху слизистой желеобразной массой коллоидального вещества — капсулой. Капсула тесно примыкает к клеточной оболочке и расположена снаружи. Иногда граница между капсулой и клеточной оболочкой плохо видна. Толщина бактериальных капсул колеблется от долей микрометра до 10 мкм и более, т. е. может намного превышать размеры бактерий (рис. 14). У некоторых бактерий капсула представляет собой просто утолщенную клеточную оболочку, у иных — коллоидный метаболит протопласта бактерий. Не всегда легко провести грань между оболочкой бактериальной клетки и капсулой. [c.23]


    П1 фаза —фаза замедления роста. Интенсивность деления клеток падает, так как изменяются условия существования культуры истощаются запасы питательных веш еств, в среде накапливаются ядовитые продукты жизнедеятельности бактерий, клетки начинают мешать друг другу. Погибает все больше особей. [c.34]

    Как же это происходит Вопрос о механизме фиксации растениями молекулярного азота воздуха до сих пор еще окончательно не выяснен. Однако известно, что клубеньковые бактерии, попадая через корневой волосок в корень бобового растения, проникают во внутренние его покровы. Под воздействием бактерий клетки корня начинают усиленно делиться на множество мелких клеток. Вскоре мелкие клетки укрепляются и начинают неравномерно развиваться. Это приводит к тому, что на корне растения появляется бесформенный, уродливый нарост в виде клубня. [c.40]

    Второй группой факторов, которые вызывают затруднения при диагностике болезней и не рассматриваются в настоящей книге, являются симбионты насекомых. Эти организмы — бактерии, риккетсии или дрожжи, постоянно обитающие в определенных частях тела насекомого, вызывают образование тканей особого типа, не имеющих дегенеративного характера, из которых, такие микроорганизмы-симбионты далее не распространяются. По этому последнему свойству можно отличить бактерий-симбионтов мух, клопов или клещей от инфекционных бактерий. Клетки в жировом теле тараканов также содержат симбионтов — мелкие слизистые образования, называемые мицетомами [38, 39]. Симбионтов в теле щитовок, листоблошек и других групп насекомых можно отличить от инфекционных бактерий или грибов по строению и реакции тканей хозяина. Детальное описание этих образований в разных видах насекомых-хозяев приведено в работах Бухнера [6, 7], где указана и соответствующая литература. Бактероиды-симбионты передаются последующим поколениям, находясь внутри или на поверхности яиц их очень трудно изолировать и разводить на искусственных питательных средах. Воздействие некоторых антибиотиков или воспитание хозяина при повышенном содержании кислорода приводит к тому, что симбионты, обитающие в полостях тела, иногда редуцируются и исчезают. Без симбионтов многие насекомые-хозяева не могут существовать и погибают. [c.21]

    Пока нет веских доказательств существования РНК-зависимого синтеза РНК в нормальных клетках млекопитающих. Строго доказан такой синтез РНК при исследовании клеток, зараженных РНК-содержащими вирусами. Теоретически для репликации вирусной РНК имеется несколько возможностей. Например, под влиянием вирусной РНК может индуцироваться синтез ДНК, которая затем служит матрицей для воспроизведения вирусной РНК. Но возможен и прямой синтез РНК на вирусной матрице. Эти два варианта можно различить, исследуя активность ДНК-полимеразы, ДНК-зависимой РНК-полимеразы и РНК-зависимой РНК-полимеразы. Оказалось, что после инфицирования в экстрактах клеток активность последнего фермента заметно увеличивается, тогда как активность первых двух ферментов остается прежней. Эти результаты и данные изотопных методов исследования подтверждают существование РНК-зависимой РНК-полимеразы в животных клетках. Описываемый фермент обнаружен в нескольких типах клеток, зараженных РНК-содержащими вирусами,— в бактериях, клетках млекопитающих и растений. [c.78]

    Первая стадия процесса сжигания пищи не требует присутствия кислорода. Она осуществляется во всех живых организмах и называется анаэробной ферментацией, или гликолизом ( разложением глюкозы ). В присутствии кислорода окончательным продуктом этой стадии, как было указано выше, является пировиноградная кислота. Но в других организмах, не использующих кислород, или в некоторых микроорганизмах, использующих кислород, но лишенных его, образуются другие соединения. Клетки дрожжей в анаэробных условиях превращают глюкозу в этанол, некоторые типы бактерий образуют ацетон, а клетки человеческих мышц образуют молочную кислоту  [c.326]

    Если в культуре концентрация клеток недостаточна или если в среде присутствуют вещества, мешающие определению, то клетки собирают центрифугированием. Комплексные среды содержат компоненты нуклеиновых кислот и сахара, которые удаляются при сборе и отмывании клеток центрифугированием. Для большинства бактерий клетки собирают центрифугированием при 5000 g в течение 15 мин при 4—5°С. Осажденные клетки суспендируют в ЦСР в объеме, составляющем Vio объема культуры. Клетки центрифугируют 15 мин при 5000 g и температуре 5°С и ресуспендируют в холодном ЦСР. Если клетки растут в солевой среде и концентрация их достаточна, культуру можно использовать для выделения ДНК непосредственно. [c.336]

    Несколько особняком стоят нитчатые бактерии, представляющие собой длинные нити из соединенных вместе палочковидных клеток, покрытых общим чехлом. В отличие от описанных выше форм бактерий нитчатые являются многоклеточными организмами. В пределах нити, как и у остальных бактерий, клетки размножаются. [c.47]

    Скорость проникновения минеральных солей в бактериальную клетку зависит от степени диссоциации на ионы, pH окружающей среды, электрического заряда бактерий. [c.100]


    Серотип (Serotype) Антигенная характеристика клетки (бактерии, клетки крови и т.д.), установленная на основе ее взаимодействия с антителами. [c.560]

    В 1981 г. в США впервые для синтеза лейкоцитарного интерферона человека бьши употреблены генетически сконструированные клетки дрожжей Sa haromy es erevisiae. Полученная эффективная экспрессия гена LelF и замена бактерий клетками дрожжей позволили увеличить производство интерферона в 10 раз. [c.142]

    Прямое действие радиации на молекулы ДНК, иРНК, тРНК и сложные надмолекулярные ансамбли — рибосомы—приводит к утрате их биологических функций, связанных с репликацией, Tpaii -крипцией и трансляцией генетического кода. Такого рода эффекты имеют решающее значение при действии радиации на вирусы, бактерии, клетки и сложные многоклеточные системы. Поэтому в настоящее время изучению механизмов инактивации нуклеиновых кислот ионизирующим излучением уделяется большое внимание. [c.66]

    Восьмая группа — аэробные/микроаэрофильные подвижные спи-ральные/вибриоидные грамотрицательные бактерии. Клетки в виде вибрионов или спиралей, движутся с помощью полярных жгутиков. Аэробы или микроаэрофилы. Метаболизм дыхательный, некоторые способны к фумаратному или нитратному анаэробному дыханию. Большинство хемоорганотрофы, но некоторые представители способны расти автотрофно с молекулярным водородом. [c.324]

    Половой, или F-фактор. F-фактор (Fertility fa tor — фактор плодовитости) контролирует процесс конъюгации и перенос генетического хромосомного материала из бактериальной клетки-донора в клетку-реципиент. Фактические данные позволяют заключить, что этот фактор найден пока лишь у некоторых бактерий. Клетки, несущие его, обозначили мужскими (Р" ), а клетки-реципиенты — женскими (F ). На одну хромосому приходится один F-фактор. [c.86]

    Аналогично бактериям клетки Protozoa содержат органеллы, выполняющие различные функции организма. Центром, энергетических процессов являются митохондрии. В результате деятельности этих органелл энергия питательных веществ переводится в форму, в которой она может быть использована организмом. Таким образом, по своим функциям митохондрии аналогичны мезо-сомам бактерий. [c.36]

    Спирохеты-группа одноклеточных хемогетеротрофных бактерий с очень характерной морфологией. Строением своих клеток и способом передвижения они отличаются от всех других бактерий. Клетка спиралевидная, как у спириллы, но не ригидная, а чрезвычайно гибкая. В сравнении с длиной (5-500 мкм) толщина ее необычно мала (0,1-0,6 мкм). Поэтому спирохеты проходят через мелкопористые фильтры (с отверстиями 0,2-0,45 мкм), задерживающие большинство бактерий, и путем фильтрования можно получать их накопительные [c.112]

    До сих пор мы рассматривали нефтяные нентациклические углеводороды ряда гопана. Безусловно, эта структура является главной для тритерпанов любых нефтей. В геохимическом аспекте весьма симптоматично, что именно гопаны, скелет которых создается простейшей прокариотической клеткой бактерий или сине-зеленых водорослей, занимают такое ведуш ее положение в нефтях [48, 54]. Следует предположить, что углеводороды ряда гопана представляют собой результат деятельности древних микроорганизмов и среди прочих соединений входили в состав липидов их клеточных мембран, т. е. образование гопанов происходило на стадии раннего диагенеза органического вещества осадков. [c.138]

    Бактериальный рак корней и стволов древесных пород. Вызывается бактерией Pseudomonas tumefa iens Sm. et Town Поражает корни и корневую шейку многих лиственных пород, реже обнаруживается на стволах и ветвях. Характерным признаком является образование в местах поражения наростов, вначале гладких, в дальнейшем шероховатых, коричневых или черных величина их может достигать 5—7 сы в диаметре. Бактерии, вызывающие данное заболевание, относятся к полупаразитам, которые могут жить в почве. Проникают бактерии в ткани растений только через поранения и повреждения, вызываемые насекомыми, а также человеком при уходе за растениями. В результате жизнедеятельности бактерий клетки тканей усиленно делятся и образуют наплывы. Через некоторое время наплывы загнивают и разрушаются и бактерии вновь попадают в почву. [c.131]

    Третья группа — аноксигенные фототрофные бактерии. Клетки растут за счет фотоассимиляции простых органических соединений. Строгие анаэробы и фотогетеротрофы. Не используют восстановленные соединения серы. Источник азота — аммоний и N2. Внутренние мембранные системы и хлоросомы отсутствуют. Клетки содержат бактериохлорофилл g и каротиноиды. Клеточная стенка без ЛПС (сем. Helioba teria eae). [c.330]

    Наиболее принципиальное отличие фага fl от фага 0X174, а также от всех остальных типов фагов, упоминавшихся в предыдущих главах, касается способа выхода частиц фагового потомства из зараженных бактерий. Клетка Е. oli, зараженная фагом fl, не лизируется в конце латентного периода, а секретирует зрелые фаговые частицы через свою стенку. Более того, зараженные бактерии продолжают расти и делиться, одновременно секретируя большие количества частиц фага fl единст- [c.467]

    По сравнению с другими методиками способ экстракции суммарных неочищенных липидов, описанный Блаем и Дайером [23], занимает меньше времени и требует меньшего числа процедур. Эта методика широко используется в работе с бактериями. Клетки смешивают с хлороформом и метанолом, взятыми в количествах, при которых образуется монофазный раствор после смешивания с внутриклеточной водой [24]. При разбавлении суспензии клеток водой или хлороформом образуется двухфазный слой. Липиды остаются в хлороформной фазе, а нелипидные вещества — в метанольно-водной. Отделив хлороформный слой, можно выделить и очистить липиды, как описано ниже. Выход суммарных неочищенных липидов после отделения от нелипидных примесей должен быть выше 95%. [c.309]

    Факторы свертывания Места клеточных контактоц/ аспознавания Клетка - клетка Вирус—клетка Бактерия—клетка Гормональные рецепторы Антнфризные функции у антарктических рыб Лектины [c.300]

    Природа захватываемого материала Инородные частицы, бактерии, клетки, липосомы, вирусы, молекулярные комплексы Малая капля жидкости, белки, гликопротеины, макромо лекулы Мелкая капля жидкости, гормоны, белки, лектины, ток сины, вирусы, гликопротенны [c.9]

    В зависимости от внещних условий дрожжи следуют одному из двух путей развития — гаплоидному или диплоидному (рис. 5.1). В условиях достаточного питания в течение 100 мин клетки проходят стандартные для эукариотических клеток фазы митотического цикла — G1, S (синтез ДНК), G2 и М (митоз). В отличие от бактерий, клетки S. erevisiae не делятся пополам, а почкуются, т. е. дочерняя клетка вырастает из материнской, покрываясь вновь синтезируемой клеточной стенкой. В неблагоприятных условиях гаплоидные клетки спариваются с партнером противоположного типа спаривания. Образовавщиеся диплоидные клетки после мейоза формирутот гаплоидные споры, которые затем прорастают, и циклы повторяются. [c.135]

    Отношение бактерий к различным источникам азота весьма специфично. Наиболее доступные источники азота —ионы аммония. Они легко проникают в клетку, где преобразуются в 11МИН0- и аминогруппы. Многие аминоаутотрофныс бактерии мо-гут использовать в качестве источника азота не только аммиак, но и азотистые соли, причем наряду с азотом бактерии часто используют и кислород в качестве акцептора водорода. [c.100]

    Образование антител, точно соответствующих чужеродному белку, — непростая задача. В ортанизме это умеют делать только некоторые виды белых кровяных телец (лейкоцитов). После того как такие клетки узнают, как построить специфические антитела, они в последствии легко могут делать то же самое. Именно так вырабатывается иммунитет к определенным вирусам и бактериям. Как только в кровь попадает определенный тип бактерий, некоторые из лейкоцитов могут сразу же синтезировать антитела, необходимые для разрушения бактерий. Человек, таким образом, выработал иммунитет к бо.лезни, вызываемой этими бактериями. [c.487]

    Авторы проведенных исследований (М.В. Иванов и др., 1980 г.) отмечают .. . применение радиозотопных методов позволило однозначно доказать, что микробиологические процессы, осуществляемые сульфатре-дуцирующими и метанообразующими бактериями, протекают по всей толще исследуемых осадков до глубины 114 м от поверхности дна . Далее они указывают "Жизнеспособные клетки сульфатредуцирующих и метанообразующих бактерий в осадках Каспия обнаружены до глубины 12 м. Численность их с глубиной заметно уменьшалась. Можно полагать, что жизнеспособные клетки сульфатредуцирующих и метанообразующих бактерий присутствуют в осадках более глубоких горизонтов, но существующие микробиологические методы остаются недостаточно чувствительными для их выявления (с. 419 - 422). Касаясь интенсивности образования восстановленных форм S и СН , авторы приходят к выводу, что максимальная интенсивность образования S, составляющая 1,8 мг на 1 кг сырого ила в сутки, обнаруживается на глубине опробования 0,5 - 1,0 м над горизонтом метанообразования. Максимальная интенсивность генера- [c.79]

    На следующем, клеточном уровне организации биологической системы почвы, исследовали влияние поллютанта на прокариотическую клетку - Azotoba ter hroo o um, бактерию, чувствительную к токсичности почв, служащую показателем высокой продуктивности. По интенсивности роста азотобактера судили о степени токсичности почвы. С увеличением дозы нефти возрастает [c.209]


Смотреть страницы где упоминается термин Бактерии как клетка: [c.14]    [c.62]    [c.14]    [c.56]    [c.29]    [c.112]    [c.218]    [c.420]    [c.322]    [c.249]    [c.162]    [c.257]    [c.128]    [c.31]    [c.85]    [c.349]    [c.94]   
Молекулярная генетика (1974) -- [ c.18 , c.47 , c.53 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Бактерии введение в клетки новой информации

Бактерии стенки клетки

Бактерии строение клетки

Бактерии, генетика числа клеток

Выделение бактерий, биологические методы клетками

Жизнеспособность клеток клубеньковых бактерий

Клетки неспорообразующих бактерий

Найдя неисчерпаемый источник восстановителей, фотосинтезирующие бактерии смогли преодолеть серьезный кризис в эволюции клетки

Перенос Са2 через мембраны простейших, бактерий и клеток растений

Покоящиеся клетки неспорообразующих бактерий

Строение и химический состав клетки бактерий

Трансформация бактерий клеток животных

Триумф рекомбинантных ДНК Введение новой генетической информации в клетки бактерий

Электропорация клеток бактерий



© 2024 chem21.info Реклама на сайте