Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм генетической нестабильност

Рис. 80. Механизм генетической нестабильности, вызываемой мобильными элементами [При попытке мобильного элемента осуществить репликативную транспозицию а пределах того же репликона. где он находитсн, возникают делеции (слева) или инверсии (справа)] Рис. 80. Механизм генетической нестабильности, вызываемой <a href="/info/1355266">мобильными элементами</a> [При попытке <a href="/info/1355266">мобильного элемента</a> осуществить <a href="/info/33378">репликативную транспозицию</a> а пределах того же репликона. где он находитсн, возникают делеции (слева) или инверсии (справа)]

    Выше упоминалось, что мобильные элементы вызывают генетическую нестабильность поблизости от участка своей локализации. Эта особенность легко объясняется уже известными нам свойствами IS-элементов и транспозонов бактерий, На рис. 80 показано, что получится при перемещении в пределах одного репликона транспозона типа ТпЗ, т.е. с репликативным механизмом транспозиции. В зависимости от того, как внесены разрывы в ДНК-мишень, получится либо делеция, либо инверсия генетического материала между местом расположения транспозона и мишенью его перемещения. По-сути дела, образование делеции напоминает процесс распада коинтеграта, но поскольку одна из образовавшихся молекул ДНК не имеет ориджина репликации, она утрачивается. Если происходит инверсия, то на обеих ее границах оказывается по копии транспозона в инвертированной друг относительно друга ориентации. Таким образом, образование делеций и инверсий характерно для репликативг ного механизма транспозиций. [c.120]

Рис. 80. Механизм генетической нестабильности, вызываемой мобильными элементами Рис. 80. Механизм генетической нестабильности, вызываемой мобильными элементами
    Следует указать и на такой механизм повышения устойчивости к аналогам, как дупликация или амплификация определенных генов. Это приводит к генетической нестабильности штамма, поскольку в отсутствие селективного давления в результате процесса рекомбинации множественные копии гена, а вместе с ними и повышенная продуктивность утрачиваются. [c.80]

    Нет никаких данных о сцеплении с X-маркерами в семьях, где обнаруживаются только униполярные психозы. Кроме того, в этой группе женщины страдают психическими расстройствами намного чаще, чем мужчины. Болезнь у них начинается обычно в более позднем возрасте, депрессии возникают в периоды гормональной нестабильности, характерной для беременности, послеродового периода и особенно для менопаузы. Таким образом, данные семейных исследований аффективных расстройств, подтверждая предположение о значимом генетическом вкладе в развитие этих заболеваний, указывают на их генетическую гетерогенность и различные биологические механизмы. [c.127]

    Характерным свойством живого материала является то, что он движется. Степень движения меняется от явного перемещения в потоке цитоплазмы до движения ионов, электролитов, молекул и макромолекул относительно друг друга внутри клетки. В результате обмена веществ биологический материал постоянно изменяется, разрушая и перестраивая функциональную архитектуру клетки. Эта выраженная нестабильность мешает проведению рентгеновского микроанализа, если не найдены пути мгновенного сдерживания активности клетки и удержания ее в этом состоянии до тех пор, пока выполняются исследования. Если бы это было сделано, то окружающая среда, в которой должен производиться рентгеновский микроанализ, полностью была бы лишена жизненных процессов. Типичный одноклеточный организм менее 2 мкм в поперечинке синтезирует много сотен соединений путем тонкого регулируемого процесса, способен воспроизводить сам себя и генетически эволюционировать и видоизменять эти процессы. Если захотелось бы найти быстрый способ разрушения этого уникального тончайшего механизма, то, вероятно, не нашлось бы ничего лучше потока быстрых электронов, который за одну секунду смог бы испарить количество воды, во много раз превышающее вес образца. [c.266]


    Высказанные выше соображения касались механизмов развития начального радиационного поражения. Последнее десятилетие ознаменовалось крупнейшим открытием не только для радиационной биологии, но и для молекулярной биологии в целом. Доказано существование ферментативных систем, способных репарировать начальные радиационные повреждения генетического аппарата клетки. Изучение биохимических механизмов репаративных процессов показало, что облученные клетки способны выщеплять поврежденные азотистые основания, воссоединять разрывы полинуклеотидных цепей ДНК. Постепенно перед исследователями начинает развертываться сложная картина борьбы облученной клетки за выживание и сохранение нативных свойств путем активации репарирующих систем. Эти идеи привели к существенной трансформации представлений о характере действия ионизирующей радиации на клетку. Если на заре развития радиобиологии предпочтение отдавалось статичным моделям, которые рассматривали гибель клетки как результат простого поражения гипотетических субклеточных мишеней, то для современного периода характерен динамический подход, который в целом соответствует представлениям динамической биохимии и биофизики. Становится общепринятым рассмотрение радиобиологического эффекта как результата интерференции двух противоположно направленных процессов — развития начального радиационного поражения и его элиминации за счет функционирования репарирующих систем. Основываясь на этом, Хуг и Келлерер предложили в качестве общей теории действия ионизирующих излучений на клетку стохастическую гипотезу . Она базируется на представлениях о том, что случайные и диффузно расположенные акты ионизации и возбуждения только в редких и маловероятных случаях однозначно приводят клетку к гибели. На эту стохастику первого порядка должна накладываться стохастика более высоких порядков , которая определяется динамической нестабильностью жизненных процессов, способных элиминировать или усиливать начальное радиационное повреждение. Разработанный авторами математический аппарат позволяет формально оценить вероятность перехода повреждения с одного уровня на следующий (развитие повреждения) или обратного перехода, связанного с восстановлением радиационного повреждения. Предложенные математические модели позволили Хугу и Келлереру получить семейство дозных кривых, хорошо согласующихся с наблюдаемыми в реальных экспериментах на клетках. Это послужило важным критерием приложимости динамических моделей для объяснения радиобиологических феноменов. [c.135]


Смотреть страницы где упоминается термин Механизм генетической нестабильност: [c.25]    [c.130]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.120 , c.122 ]

Молекулярная биология (1990) -- [ c.120 , c.122 ]




ПОИСК







© 2025 chem21.info Реклама на сайте