Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Одноклеточные организмы

    Спектр продуктов, образующихся методами биотехнологии, необычайно широк и разнообразен. Целевыми продуктами биотехнологических производств могут быть интактные клетки. Одноклеточные организмы используют для получения биомассы, являюшейся источником кормового белка. Клетки, особенно в иммобилизованном состоянии, выступают в роли биологических катализаторов для процессов биотрансформации. [c.32]


    Дрожжи — это живые одноклеточные организмы, содержащие фермент зимазу, который катализирует реакцию. [c.640]

    Источником всех видов энергии, используемых в биологических системах, является солнечный свет, а преобразование световой энергии в химическую происходит в ходе уникального и важнейшего для жизни процесса -фотосинтеза. Способностью к фотосинтезу обладают как эукариоты (высшие зеленые растения, зеленые, бурые и красные водоросли, некоторые одноклеточные организмы), так и прокариоты (синезеленые водоросли, зеленые и пурпурные бактерии). [c.92]

    Способ действия р-лактамных антибиотиков. р-Лактамные антибиотики эффективны только против определенного вида болезнетворных микробов, и их активность зависит от способности вторгаться в структуру клеточной стенки. Все одноклеточные организмы обладают механически прочными стенками для того, чтобы выдерживать значительное осмотическое давление, возникающее внутри клетки при высоких концентрациях растворенных веществ. Клетки, не подвергающиеся большому осмотическому давлению, не имеют таких укрепленных стенок (например, красные кровяные клетки) и обычно разрушаются при внесении в воду. [c.370]

    Вероятно, гликолиз представляет собой живое ископаемое -реликтовый биохимический процесс, сохранившийся с тех времен, когда в земной атмосфере не было кислорода и одноклеточные организмы существовали за счет расщепления органических молекул, встречающихся в естественных условиях. Когда живые организмы приобрели большие размеры, стали сложнее и увеличили свои энергетические потребности, а в земной атмосфере появился кислород, произошло развитие более сложного биохимического процесса, требующего намного большего количества энергии и известного под названием цикла лимонной кислоты . Но прежде чем мы рассмотрим этот процесс, следует познакомиться с универсальным способом запасания химической энергии в любых живых организмах. [c.327]

    Потребность живых организмов в энергии объясняется двумя причинами. Во-первых, организмы используют имеющиеся в окружающей среде вещества для синтеза необходимых им соединений. Большинство происходящих при этом реакций являются эндотермическими. Чтобы вызвать протекание таких реакций, необходимо получать энергию из каких-либо внешних источников. Во-вторых, живые организмы обладают очень высокой организацией. Сложность всех веществ, образующих даже простейшие одноклеточные организмы, и взаимосвязей между множеством протекающих в них химических процессов поистине поразительна. С точки зрения термодинамики это означает, что живые организмы характеризуются очень низкой энтропией по сравнению с сырьевыми веществами, из которых они образованы. Высокая упорядоченность, присущая живым системам, достигается ценой затраты энергии. [c.441]


    Белок одноклеточных организмов (БОО) — термин, принятый для обозначения белковых продуктов, синтезируемых монокультурой микробных клеток и использующихся в качестве пищевых добавок или корма для скота. Вопрос об использовании микробной биомассы в качестве источника белка рассматривается вполне серьезно. Это связано не только с дефицитом продовольствия в общемировом масштабе, но и с тем, что содержание белка в большинстве микроорганизмов весьма велико на его долю приходится примерно 60—80% сухой массы клетки. Кроме того, благодаря высокому содержанию метионина, лизина, витаминов и важных минералов БОО обладает более высокой пищевой ценностью, чем некоторые виды пищи растительного и животного происхождения. Но широкое применение БОО сдерживается по ряду причин. [c.301]

    У высших организмов Д.-сложный комплекс физиол. и биохим. процессов, в к-ром можно выделить ряд осн. стадий. I) внеш. Д. поступление Oj из среды в организм, осуществляемое с помощью спец. органов Д. (легких, жабр, трахей и т.д.) или через пов-сть тела (напр., у кишечнополостных) 2) транспорт О2 от органов Д. ко всем др. органам, тканям и клеткам у большинства животных эта ф-ция обеспечивается кровеносной системой при участии спец. белков переносчиков кислорода (гемоглобин, миоглобин, гемоцианин и др.) 3) тканевое, или клеточное, Д. собственно биохим. процесс восстановления О2 в клетках при участии большого числа разных ферментов. Д. многих, в первую очередь одноклеточных, организмов сводится к клеточному Д., а стадии 1 и 2 обеспечиваются диффузией Ог- [c.124]

    Особым сортом кремневой кислоты является так называемый кремнезем, или инфузорная земля, представляющий собой скелеты первобытных одноклеточных организмов. Кремнезем обладает лишь незначительной адсорбционной активностью. Значительно чаще, чем для самой адсорбции, его применяют в качестве материала, облегчающего фильтрацию через мелкозернистые адсорбенты. Для этой цели кремнезем предварительно очищают (например, кипячением со щелочами и с кислотами) и прокаливают. Приготовленный таким образом препарат смешивают в определенном соотношении с адсорбентом для того, чтобы фильтрование проходило с нужной скоростью. [c.346]

    Дрожжи — живые одноклеточные организмы (грибки), размножающиеся в сахаристой среде для их жизнедеятельности нужно, чтобы среда содержала соли аммония (как источник азота для синтеза ими белков своего тела), соли фосфорной кислоты и еще некоторые минеральные соли. Можно, однако, раздавить и таким образом убить дрожжи (Бухнер) или подсушить их и экстрагировать водой (А, Н. Лебедев), и все равно их сок или экстракт оказывает каталитическое действие и вызывает такое же превращение сахаров в спирт, как и живые дрожжи. Ферментный препарат, сбраживающий сахара, был назван зимазой. Оказалось, что он содержит целый комплекс ферментов, из которых многие присутствуют и в клетках животных и растений, катализируя в процессе клеточного дыхания те же превращения сахаров (глюкозы или фруктозы), что и в первой фазе брожения. Названия этих ферментов приведены в схеме на стр. 464. Строение ферментов рассмотрено в отдельной главе книги II. [c.462]

    Процесс адаптации есть, в самом широком смысле, процесс обучаемости. В гл. 12 хемотаксис бактерий описан как модель восприятия и поведения. В ряду других умственных свойств этих одноклеточных организмов стоит их способность к обучению при индукции подходящего фермента бактерия может научиться расти в специфической среде при индукции соответствующего рецептора бактерия может выучиться передвигаться в область высокой концентрации рибозы, а не в область высокой концентрации галактозы, как прежде. Хотя при этом не задействована нервная система, описание исследований Адлера и Кошланда по восприятию и процессингу сигнала в хемотаксических бактериях и их интерпретация могут составить целый интересный раздел нейробиологии. [c.336]

    К водорослям относятся как микроскопические одноклеточные организмы, так и морские водоросли, тело которых может достигать более 45 м в длину. Из водорослей выделено большое число полисахаридов, однако их строение все еще до конца не определено этим соединениям посвящены обзоры [103, 124]. [c.248]

    Энзиматические системы, осуществляющие синтез жирных кислот, называются жирно-кислотными синтетазами. Они широко встречаются в природе и могут быть изолированы из различных одноклеточных организмов, растений и животных тканей. [c.383]

    В этой работе вы будете наблюдать действие сигаретного дыма на живые организмы. Эвглена (ЕиЕ1епа) - одноклеточный организм, живущий в воде, где плавает , быстро двигая нитевидными отростками (жгутиками). [c.488]

    Белок одноклеточных организмов [c.301]

    Одноклеточные организмы не имеют нервной системы , но тем не менее воспринимают информацию из окружающей среды. Они обрабатывают информацию, собирают ее и переда- [c.354]

    Бактерии представляют собой простейшие (в основном одноклеточные) организмы, размножающиеся путем деления. [c.488]


    Краткое рассмотрение различных представителей микромира, занимающих определенные этажи размеров, показывает, что, как правило, величина объектов определенно связана с их структурной сложностью. Нижний предел размеров свободноживущего одноклеточного организма определяется пространством, требуемым для упаковки внутри клетки аппарата, необходимого для независимого существования. Ограничение верхнего предела размеров микроорганизмов определяется, по современным представлениям, соотношениями между клеточной поверхностью и объемом. При увеличении клеточных размеров поверхность возрастает в квадрате, а объем — в кубе, поэтому соотношение между этими величинами сдвигается в сторону последнего. У микроорганизмов по сравнению с макроорганизмами очень велико отношение поверхности к объему. Это создает благоприятные условия для активного обмена между микроорганизмами и внешней средой. И действительно, метаболическая активность микроорганизмов, измеренная по разным показателям, в расчете на единицу биомассы намного выше, чем у более крупных клеток. Поэтому представляется закономерным, что низшие формы жизни могли возникнуть и в настоящее время могут существовать только на базе малых размеров, так как последние создают целый ряд преимуществ, обеспечивающих жизнеспособность этим формам жизни. [c.23]

    У эубактерий можно проследить разные уровни клеточной организации. Подавляющее большинство эубактерий — одноклеточные организмы. Для свободноживущих форм это может быть определено как способность осуществлять все функции, присущие организму, независимо от соседних клеток. В то же время для многих эубактерий отмечается тенденция существовать не в виде одиночных клеток, а формировать клеточные агрегаты (см. рис. 3, 5). Для неподвижных клеток последние есть результат ряда последовательных делений, приводящих к появлению колоний. Однако образование агрегатов клеток наблюдается и у подвижных форм. Часто клетки в агрегатах удерживаются с помощью выделяемой ими слизи. Прочность и долговечность существования таких агрегатов зависят от свойств слизи и условий внешней среды. На этом этапе можно говорить лишь о случайном клеточном объединении, которое не противоречит данному выше определению одно-клеточности. [c.76]

    Группа пурпурных бактерий, насчитывающая более 50 видов, представлена одноклеточными организмами разной морфологии (рис. 78). Длина их колеблется от 1 до 20 мкм, щирина — от 0,3 до 6 мкм. Некоторые виды образуют выросты. Среди пурпурных бактерий есть неподвижные и подвижные формы. Движение осуществляется с помощью одного или пучка жгутиков, расположенных обычно полярно. Больщинство пурпурных бактерий размножаются бинарным делением, некоторые виды — почкованием. Клетки неподвижных форм, размножающихся поперечным делением в разных плоскостях, имеют тенденцию формировать афе-гаты правильной геометрической формы. [c.297]

    Вторая группа железобактерий включает одноклеточные организмы из разных таксонов. Она представлена эубактериями с грамположительным и грамотрицательным строением клеточной стенки или без нее, размножающимися поперечным делением или почкованием. Клетки разной формы и размеров (форма может меняться в зависимости от стадии и условий роста), одиночные или формирующие скопления, окруженные капсулами, в которых откладываются окислы железа и марганца. Принадлежащие к этой группе железобактерии распадаются на две подгруппы, различающиеся типом метаболизма и отношением к кислотности среды. [c.378]

    Простейшие Protozoa). Это одноклеточные организмы животного происхождения. Большинство из них в сотни раз больше многих бактерий. Они, как и все животные, лишены твердой оболочки, но имеют мягкую или гибкую и относительно хрупкую внешнюю клеточную мембрану. Чаще всего она состоит из хитина или родственных ему соединений и не содержит целлюлозы. [c.273]

    Гормоны характерны для многоклеточных организмов. Одноклеточные организмы в них не нуждаются. Благодаря гормонам осуществля- [c.418]

    X. токсичен по отношению ко мн. бактериям и др. одноклеточным организмам. Он оказывает разностороннее действие на организм человека угаетает центр, нервную систему и терморегулирующие центры, понижая т-ру при лихорадочных состояниях понижает возбудимость сердечной мышцы возбуждает мускулатуру мягки и усиливает ее сокращение, уменьщает селезенку. Характерное св-во X.- противомалярийное действие. Причем ра1(ематы и синтетич. энантиомеры X. обладают таким же действием. В мед. практике применяют гидрохлорид, дигидрохлорид и сульфат X. В связи с появлением более эффективных синтетич. противомалярийных препаратов X. имеет офаниченное использование. Соли X. используют в акушерской практике для возбуждения и усиления родовой деятельности. X. служит также адсорбцион- [c.265]

    В отличие от сложных белков, белки одноклеточных организмов (БОО) используются как пищевая добавка. Обогащением белковыми добавками на основе БОО улучшают качество растительного белка. Эти добавки повышают содержание витаминов, микроэлементов, а главное — аминокислот, несинтезируемых многими растениями. Производство пищевых белков измеряется миллионами тонн в год и постоянно растет. Микробиологический синтез белка, продукт которого представляет собой инактивированную массу клеток, — основной [c.429]

    Характерным свойством живого материала является то, что он движется. Степень движения меняется от явного перемещения в потоке цитоплазмы до движения ионов, электролитов, молекул и макромолекул относительно друг друга внутри клетки. В результате обмена веществ биологический материал постоянно изменяется, разрушая и перестраивая функциональную архитектуру клетки. Эта выраженная нестабильность мешает проведению рентгеновского микроанализа, если не найдены пути мгновенного сдерживания активности клетки и удержания ее в этом состоянии до тех пор, пока выполняются исследования. Если бы это было сделано, то окружающая среда, в которой должен производиться рентгеновский микроанализ, полностью была бы лишена жизненных процессов. Типичный одноклеточный организм менее 2 мкм в поперечинке синтезирует много сотен соединений путем тонкого регулируемого процесса, способен воспроизводить сам себя и генетически эволюционировать и видоизменять эти процессы. Если захотелось бы найти быстрый способ разрушения этого уникального тончайшего механизма, то, вероятно, не нашлось бы ничего лучше потока быстрых электронов, который за одну секунду смог бы испарить количество воды, во много раз превышающее вес образца. [c.266]

    Из тысяч видов водорослей известна одна группа, а именно диатомовые водоросли, или диатомеи, образующие класс 01а1о-тасеае или Вас111аг1орЬусеае, которые способны поглощать растворимый кремнезем из воды при чрезвычайно низких его концентрациях, причем такой кремнезем подвергается метаболизму и осаждается в виде внешнего скелета. Согласно данным Калверта [33], существует более чем 10 000 разновидностей диатомей некоторые из них живут в пресной воде, а другие — в соленой воде. Почти все разновидности схожи в том отношении, что их наружные стенки наполнены кремнеземом. Эти растения представляют собой одноклеточные организмы, состоящие из двух частей, причем края одной части входят внутрь другой, что напоминает соединение двух половинок коробочки от пилюль. Помимо того что диатомовая водоросль упрятана в кремнеземную оболочку, каждая ее клетка способна накапливать капельку нефти. Предполагается, что эта нефть наряду с другими [c.1011]

    Неклеточные формы жизни не существуют на Земле. Вирусы и бактериофаги не могут рассматриваться как самостоятельные живые системы — из всех функций живой клетки они обладают лишь способностью передавать генетическую программу. Напротив, основные характеристики жизни прпсущи как одноклеточным организмам, так и подавляющему большинству типов специализированных клеток многоклеточных. Строение и поведение отдельных клеток настолько сложно, что оказывается возможным формулировать проблемы поведения на клеточном уровне, проблемы цитоэтологии (Александров, 1970). [c.332]

    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

    Некоторые виды биомассы (например, сыворотка, целлюлозные отходы) и продукты переработки нефти могут служить субстратом при культивировании микроорганизмов. Предполагалось, что эти чистые культуры, а также их продукты (так называемый белок одноклеточных организмов, БОО) можно будет использовать в качестве пищевых добавок или корма для скота. К сожалению, вследствие дороговизны получаемых проуктов, их невысоких вкусовых качеств, а иногда и токсичности производство БОО оказалось экономически нецелесообразным. Однако есть надежда, что с помощью генетических манипуляций все-таки удастся создать систему, позволяющую получать дешевые биологические добавки на основе БОО. [c.303]

    Метод репликации функциональной ДНК, включающий трансформацию в подходящих условиях соответствующих одноклеточных организмов с помощью функциональной ДНК с целью получения трансформантов, при этом функциональная ДНК получена in vitro следующим образом а) расщеплением вирусной или кольцевой плазмидной ДНК, совместимой с указанным одноклеточным организмом, с получением линеаризованного фрагмента, содержащего интактный репликон и концевой участок с заранее заданными свойствами б) объединением первого линеаризованного фрагмента со вторым, чужеродным по отношению к указанному одноклеточному организму и содержащим по меньщей мере один интактный ген и концевой участок, способный к лигированию с концевым участком первого линеаризованного фрагмента, причем по меньшей мере один из линеаризованных фрагментов содержит ген определенного фенотипического признака в условиях, подходящих для такого объединения, причем концевые участки первого и второго фрагментов объединяются с образованием функциональной ДНК, способной к репликации и транскрипции в указанном одноклеточном организме выращивание указанного одноклеточного организма в подходящей питательной среде и выделение трансформантов, обладающих данным фенотипическим признаком, проявление которого обусловливается У указанной функциональной ДНК.  [c.540]

    Дрожжи — одноклеточные организмы (грибки), обладающие способностью возбуждать брожение сахаристых веществ Дрожжевая клетка вследствие небольшого размера (3,1 в длину и 2,8 в ширину) невидима для невооруженного глаза Она имеет круглую овальную или удлиненную форму Дрожжевая клетка состоит из оболочки, протоплазмы и ядра Протоплазма представляет собой полужидкую массу с вакуолями, наполненными клеточным соком Протоплазма содержит ряд питательных веществ, как то волют ин (азотистое соединение), гликоген (углевод, близкий к крахмлу), и др Гликоген является запасным питательным веществом, расхо- дуемым клеткой при недостатке питания  [c.182]

    Белок одноклеточных организмов, БОО (Single- ell protein) Белковые продукты, синтезируемые монокультурой микроорганизмов и использующиеся в качестве пищевых добавок к рациону животных. [c.544]

    Время генерации (Generation time) Время, за которое в популяции одноклеточных организмов удваивается число клеток. Называется также временем удвоения. [c.545]

    Основной областью применения метанола является получение формальдегида (свыше 40 %). Метанол также используется в синтезе уксусной кислоты, сложных эфиров (в частности, диме-тилфталата), простых эфиров (МТБЭ, МТАЭ и др.), метилгало-генидов, аминов, ионообменых смол, в качестве растворителя, экстрагента и добавки к моторным бензинам. В дополнение к традиционным областям потребления значительными могут стать в будущем потребности в метаноле в новых областях, таких, как энергетика, синтез белка, продуцируемого одноклеточными организмами. [c.838]

    Под общим понятием бактерии в настоящее время описано свыше 1600 видов микроорганизмов-прока-риот, не имеющих настоящего сложно организованного ядра. Большинство представителей бактерий — одноклеточные организмы, разнообразные по размерам и физиологическим свойствам. По форме все бактерии можно разделить на шаровидные (кокки), палочковидные, извитые и нитчатые. В последние годы из почвы выделены также бактерии, имеющие своеобразные формы. [c.27]

    Известны, однако, случаи, когда такое временное агрегирование одноклеточных организмов связано с осуществлением определенной функции. Примером может служить образование плодовых тел миксобактериями, которое делает возможным созревание цист, на что не способны в обычных условиях единичные клетки. В аэробных условиях описано образование строго анаэробными бактериями из рода lostridium колоний, по внешнему виду напоминающих плодовые тела миксобактерий, в которых спорулиру-ющие клетки и эндоспоры расположены внутри и защищены от кислорода плотным слоем слизи. [c.76]

    Миллионы лет назад клетки образовались из более простых структур, вероятно, из древних белков, нуклеиновых кислот и их комплексов. Остается неизвестным, что же послужило предпосылкой этой стадии в эволюции материи. Возможно, для этого были необходимы какие- о специальные полимерные структуры, в настоящее время на -Земле отсутствующие. Не исключено также, что они возникли из структур, похожих на современные белки и нуклеиновые кислоты, но были необходимы специфические условия для того, чтобы они смогли организоваться в примитивные клетки, способные к воспроизводству. И наконец, не исключено также и то, что и необходимые вещества, и специальные условия существуют до сих пор где-либо на Зем.че. Однако в настоящее время невозможно наблюдать образование клеток даже при использовании современных экспериментальных подходов из-за присутствия в о кружающей среде огромного числа одноклеточных организмов и их непрерывного воспроизводства. Теория зарождения жизни до сих пор продолжает оставаться одной из наиболее загадочных проблем биологии. Эта теория должна ответить в первую очередь на два основных вопроса первый — каким образом набор полимерных и низкомолекулярны.ч веществ появился в ходе химической эволюции второй — как эти вещества сумели объединиться в первые живые клеточные организмы. [c.20]

    Клетки необычайно разнообразны по своим размерам, формам, внутренней структуре и функциям. Огромное разнообразие клеток существует в виде одноклеточных организмов с разнообразными уровнями сложности. В многоклеточных организмах клетки специапизированы следовате,пьпо, огромное число различных типов клеток может существовать внутри одного организма. В организме человека число типов клеток превышает двести. [c.20]


Смотреть страницы где упоминается термин Одноклеточные организмы: [c.395]    [c.489]    [c.39]    [c.33]    [c.111]    [c.354]    [c.44]    [c.489]    [c.371]   
Биология Том3 Изд3 (2004) -- [ c.118 ]

Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.29 , c.88 ]




ПОИСК







© 2025 chem21.info Реклама на сайте