Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепи полинуклеотидные

Рис. 15.22. Схема постулированного механизма реБликации гена посредством синтеза двух новых полинуклеотидных цепей, комплементарных цепям исходного гена. Спиральная структура цепей на схеме не показана. Рис. 15.22. Схема постулированного механизма реБликации гена посредством <a href="/info/11666">синтеза</a> двух новых полинуклеотидных цепей, <a href="/info/509747">комплементарных цепям</a> исходного гена. <a href="/info/136222">Спиральная структура</a> цепей на схеме не показана.

    Двойная спираль ДНК (разд. 25.6) образуется как бы в результате закручивания двух полинуклеотидных цепей друг около друга по винтовой линии вокруг общей оси. Две цепи двойной спирали ДНК являются комплементарными (взаимодополняющими), так как расположение органических оснований вдоль двух цепей создает оптимальные условия для возникновения водородных связей. [c.465]

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    Если скелетом молекулы белка является полиамидная цепь (полипептид-ная цепь), то скелетом молекулы нуклеиновой кислоты служит полиэфирная цепь (полинуклеотидная цепь). Сложноэфирная связь образуется между фосфорной кислотой (кислотный остаток) и сахаром (спиртовой остаток) [c.1062]

    Вторичная структура нуклеиновых кислот создается за счет взаимодействия соседних по полинуклеотидной цепи мономерных звеньев, а в случае двуспиральных молекул (нли участков молекул) также взаимодействием нуклеотидных остатков, находящихся напротив друг друга в двойной спирали. Третичная структура нуклеиновых кислот организуется за счет взаимодействия нуклеотидных остатков, принадлежащих различным элементам их вторичной структуры. [c.20]

    В середине 1960-х годов Д. Виноград и сотр. обнаружили, что ДНК некоторых бактериофагов и митохондрий может существовать в виде циклических молекул. Позже было установлено, что большинство вирусных и множество клеточных ДНК имеют кольцевую форму. В том случае, если обе полинуклеотидные цепи в кольцевой молекуле, образованной двуспиральной ДНК, ковалентно замкнуты (аналогичная ситуация возникает, когда концы петель двуспиральной ДНК скреплены белками), то они уже не могут быть разделены в пространстве. [c.31]

    Мы сразу же поняли, что строение ДНК может оказаться более сложным, чем строение а-спирали. В а-спирали одна полипептидная цепь (последовательность аминокислот) сворачивается в спираль, удерживаемую водородными связями между группами этой же цепи. Морис, однако, сказал Фрэнсису, что диаметр молекулы ДНК больше, чем это было бы, если бы она состояла только из одной полинуклеотидной цепи (последовательности нуклеотидов). Это навело его на мысль, что молекула ДНК представляет собой сложную спираль, состоящую из нескольких полинуклеотидных цепей, завернутых одна вокруг другой. В этом случае всерьез приниматься за построение модели можно было, только решив заранее, как соединены эти цепи друг с другом водородными свя- [c.37]


    Молекула ДНК состоит из мономеров, называемых нуклеотидами, которые удерживаются вместе химическими связями в линейной последовательности, называемой полинуклеотидной цепью или молекулой нуклеиновой кислоты. Каждый нуклеотид состоит из трех составных частей молекулы фосфорной кислоты, молекулы моносахарида дезокси-рибозы (см. разд. 13.6) и молекулы азотсодержащего соединения, называемого азотистым основанием. Молекулы моносахарида и фосфорной кислоты конденсируются, образуя длинные полинуклеотидные цепи [c.454]

    Обычно только поздно вечером, вернувшись домой, я пытался разгадать тайну оснований. Их формулы приведены в небольшой книге Дж. Н. Дэвидсона Биохимия нуклеиновых кислот , и у меня в Клэр был ее экземпляр. Поэтому я не сомневался, что правильно рисую крохотное изображение оснований. Мне хотелось расположить основания в центре молекулы таким образом, чтобы внешние цепи оказались совершенно регулярными, то есть чтобы сахаро-фосфатные группы каждого нуклеотида имели одинаковую пространственную конфигурацию. Но всякий раз, пытаясь решить эту задачу, я наталкивался на препятствие, заключавшееся в том, что у всех четырех оснований совершенно разная форма. Кроме того, у нас были причины считать, что последовательность оснований в любой полинуклеотидной цепи весьма нерегулярна. И если просто наугад скручивать две такие цепи, получалась чепуха. Основания покрупнее кое-где должны были соприкасаться, а там, где друг против друга располагались основания поменьше, между ними приходилось оставлять промежуток, ибо соответствующие участки остова недопустимо прогибались. Чтобы этого избежать, нужно было придумать какой-нибудь хитрый прием. [c.103]

    Очень расстроенный, я вернулся к своему столу, надеясь все-таки отыскать какую-нибудь зацепку, которая спасла бы идею соединения подобного с подобным. Но было ясно, что новое требование наносило ей смертельный удар. Если поставить атомы водорода в кето-положение, то несоответствие в размерах между пуринами и пиримидинами становилось еще более разительным. Очень трудно было представить себе полинуклеотидный остов, изогнутый до такой степени, чтобы в нем могла поместиться нерегулярная последовательность таких оснований. И даже этот луч надежды погас, когда пришел Фрэнсис. Он тут же сообразил, что структура, в которой подобное соединялось бы с подобным, давала бы кристаллографический период, равный 34 А, лишь в том случае, если бы каждая цепь образовывала спираль с величиной витка 68 А. Но это означало бы, что угол поворота между смежными основаниями составляет 18°, а последняя возня с моделями убедила Фрэнсиса, что такая [c.109]

    Оказывается, новосинтезированные цепи ДНК всегда содержат на 5 -конце несколько рибонуклеотидов. Иными словами, сннтеэ ДНК начинается с синтеза РНК- РНК-затравку для синтеза ДНК образует специальный фермент, называемый ДНК-праймазой (от англ. праймер — затравка). Праймаза может быть отдельны. 1 ферментом, как у бактерий, илн входить в качестве субъединицы в ДНК-полимеразу (как у ДНК-полимеразы а животных). В любом случае праймаза — это фермент, отличный от РНК-полимераз, синтезирующих разнообразные клеточные РНК и тоже способных инициировать синтез новых полинуклеотидных цепей (см. гл. VII). Почему же в таком случае для инициации цепей ДНК используются рибонуклеотиды Возможное объяснение состоит в том, что в ходе эволюции прай.чазы произошли из РНК-полимераз. Но есть и другое, функциональное, объяснение. Поскольку требования инициа- [c.51]

    Молекулы РНК не ассоциируют в пары с образованием аналогичной двойной спирали. Значительный объем дополнительной гидроксильной группы в углеводном фрагменте ограничивает конформационную гибкость полинуклеотидной цепи РНК. Главным образом эта гидроксильная группа определяет способность фермента различать ДНК и РНК. Внутри молекулы РНК могут образоваться короткие стержнеобразные двойные спиральные структуры за счет свертывания частей одной и той же нуклеотидной цепи. [c.321]

    Согласно этой модели, макромолекула ДНК представляет собой спираль, состоящую из двух полинуклеотидных цепей, закрученных вокруг общей оси (рис. 25). [c.662]

    Рис, 4. Направленное расщепление полинуклеотидной цепи РНК ферментом РНКазой Н [c.15]

    Размеры полинуклеотидных цепей РНК колеблются от нескольких десятков и сотен (транспортные, малые рибосомные, малые ядерные "НК) до нескольких тысяч (рибосомные, информационные и вирусные РНК) нуклеотидных остатков. [c.19]

    Можно произвести приближенные, но тем не менее убедительные расчеты вероятности ошибки, которая может возникнуть в отдельном участке при синтезе полинуклеотидной цепи на комплементарной матричной цепи. Изменение энтропии, связанное с введением в строящуюся цепь неправильного нуклеотида, почти то же, что и в случае правильного, и соответственно различие в энергии Гиббса практически равно различию в энтальпии, т. е. составляет 40 кДж-моль (или 60 кДж-моль ). Используя представление о химическом равновесии для рассматриваемого процесса, можно записать [c.458]

    Стратегические проблемы синтеза полипептидов и полинуклеотидов носят существенно иной характер. Здесь также требуется последовательное построение необходимых межмономерных связей и, следовательно, применение эффективных и общих методов создания амидной и фосфодиэфирной связей соответственно. Однако в отличие от типичных полисахаридов эти биополимеры состоят из линейных, но нерегулярных последовательностей не идентичных мономерных звеньев. Именно эта специфическая последовательность определяет уника,тьные химические, физические и биохимические свойства каждого из этих биополимеров. Таким образом, стратегической проблемой в синтезе этих соединений является обеспечение строго определенной последовательности мономерных звеньев в растущей полнпептидной или полинуклеотидной цепи, тогда как задача построения самих межмономерных связей низводится на тактический, рутинный уровень. Очевидно, что для построения таких нерегулярных полимерных цепей реакции типа полимеризации или поликонденсации принципиально неприменимы (в противоположность синтезу регулярных полисахаридов), а присоединение к растущей цепи каждого очередного мономерного звена превращается в самостоятельную операцию, требующую собственного набора реагентов и условий ее проведе- [c.298]


    Аналогичные закономерности наблюдаются прн катализированном ферментами синтезе (биосинтезе) полимеров. Мономеры в этом случае являются бифункциональными соединениями, но вследствие высокой специфичности катализатора оказывается возможным взаимодействие лишь одной из функциональных групп мономера с определенным концом растущей полимерной цепи. Например, фермент полинуклеотидфосфорилаза, с помощью которого происходит биосинтез полирибонуклеотидов из нуклеозиддифосфа-тов, катализирует взаимодействие концевой 3 —ОН группы растущей полинуклеотидной цепи с пирофосфатной связью в мономере  [c.368]

    К нашему удивлению, Морис почти сразу принял приглашение Фрэнсиса приехать в Кембридж на воскресенье. Не потребовалось и убеждать Мориса, что структура ДНК наверняка представляет собой спираль. Это была не просто самая очевидная догадка. На летней конференции в Кембридже Морис уже сам говорил о спиралях. За полтора месяца до моего первого приезда сюда он демонстрировал рентгенограммы ДНК, где явно отсутствовали рефлексы на меридиане, и его коллега, теоретик Алекс Стоукс, сказал ему, что это скорее всего указывает на спираль. Это заключение натолкнуло Мориса на мысль, что ДНК — спираль, состоящая из трех полинуклеотидных цепей. [c.40]

    Фрэнсису оставалось одно исходить из предположения о таком содержании воды, которое могло быть наиболее удобным для дальнейших рассуждений. Вскоре он как будто что-то нащупал и принялся быстро писать на последней чистой странице рукописи, которую читал перед этим. Я уже перестал понимать, что он ищет, и занялся чтением Таймса . Однако через несколько минут Фрэнсис заставил меня забыть обо всем на свете — он сказал, что лишь очень небольшое число структур совместимо и с теорией Кокрена - Крика и с экспериментальными данными Рози. Он принялся быстро чертить графики, чтобы показать мне, насколько все это просто. Хотя его математических выкладок я не понимал, разобраться в сути дела оказалось нетрудно. Следовало решить, сколько полинуклеотидных цепей содержит молекула ДНК. Рентгенографические данные, по-видимому, могли соответствовать наличию двух, трех или четырех цепей. Вопрос заключался только в том, каков угол наклона и радиусы спиралей, образуемых этими цепями. [c.50]

    Тем не менее за утренним кофе Фрэнсис пребывал в полнейшей уверенности, что уже имеюшихся экспериментальных данных вполне должно хватить для окончательного решения. Можно исходить из совершенно разных сочетаний фактов и все-таки в конце концов прийти к одинаковым результатам. Не исключено, что проблема будет разрешена, если мы просто займемся наиболее изящной конфигурацией полинуклеотидной цепи. И вот, пока Фрэнсис раздумывал над рентгенограммами, я принялся собирать модели разных атомов в цепи, каждая длиной в несколько нуклеотидов. Хотя природные цепи ДНК очень длинны, создавать нечто громоздкое не имело смысла. Если это действительно спираль, то правильное расположение одной пары нуклеотидов должно автоматически определить расположение всех остальных компонентов. [c.55]

    Хотя теоретическая основа многих выводов Бернала и Фанкухена и осталась для меня туманной, одно было ясно ВТМ состоит из большого числа одинаковых субъединиц. Как они расположены, Бернал и Фанкухен не знали. К тому же в 1939 году еще нельзя было предположить, что белковая часть вируса и его РНК устроены совершенно по-разному. И если теперь белок, состоящий из множества субъединиц, легко представить, то для РНК такое строение было немыслимо. Если бы она делилась на большое число субъединиц, то полинуклеотидные цепи были бы слишком коротки и не могли бы вмещать генетическую информацию, носителем которой, по нашему с Фрэнсисом убеждению, [c.67]

    Группа Летсингера и Клотца разработала недавно метод синтеза иеитидов с использованием матриц этот метод напоминает природный механизм синтеза на рибосомах (рис. 2.1). В методе используются полимерный носитель и полинуклеотидная матрица, но отсутствует необходимость, как и в природных системах, временно защищать аминокислоты для образования правильных связей. Такой подход назван методом комплементарного носителя (рис. 2.5). Растущая полипептидная цепь связана концевой карбоксильной группой с 5 -ОН-группой олигонуклеотида эфирной связью. Новая поступающая аминокислота также присоединена эфирной связью, но с З -ОН-групной второго олигонуклеотида. [c.65]

    После завершения реакции защитные группы можно удалить в мягких условиях, не затрагивающих фосфодиэфирной связи. На этом основан фосфодиэфирный метод синтеза полинуклеотидов. Продукт реакции — фосфодиэфир со свободной, потенциально уязвимой для воздействия, отрицательно заряженной группой. Далее, с увеличением длины полинуклеотидной цепи число отрицательных зарядов в соединении также будет увеличиваться. Поэтому в зависимости от условий реакции эти потенциально нуклеофильные центры могут участвовать в нежелательных побочных реакциях. Кроме того, такое многозарядное соединение слищком полярно, чтобы можно было проводить его очистку обычными методами органической химии, например с помощью хроматографии на силикагеле. Вместо этого необходимо использовать хроматографию на ионообменных носителях, обладающих меньшей емкостью (например, на ДЭАЭ-целлюлозе). Фосфодиэфирный метод пригоден для получения веществ лишь в небольших количествах. Однако нейтрализация зарядов путем этерифи-кации подходящими защитными группами перед фосфорилирова-нием нуклеозидов устраняет проблемы, упомянутые выше. В этом случае продуктом реакции конденсации является фосфотриэфир. Фосфотриэфирный метод позволяет работать с большими количествами веществ. Ниже описаны некоторые защитные группы, используемые для блокирования фосфата. [c.167]

    Белки, нуклеиновые кислоты (ДНК и РНК), полисахариды являются биологическими полиэлектролитами. В вОдном растворе Na l ДНК находится в виде двойной спирали, состоящей из двух закрученных относительно друг друга полинуклеотидных цепей. Полиэлектролитные свойства ДНК обусловлены наличием фосфатных групп. Эти группы нейтрализованы противоионами — ионами Na+. Коионами являются ионы С1". Из-за высокой плотности зарядов фосфатных групп в двухспиральной ДНК доля Диссоциированных противоионов равна л 0,24. Разрушение ДВОЙНОЙ спирали (денатурация) сопровождается уменьшением плотности заряда. При этом доля диссоциированных противоионов существенно увеличивается. [c.175]

    Водородные связи играют большую роль в организации и стабилизации вторичных структур нуклеиновых кислот. Однако в последнее время накапливаются данные, свидетельствующие о том, что водородные связи являются не единственными, а в ряде случаев и не самыми существенными силами при образовании вторичных структур нуклеиновых кислот. Серьезными конкурентами водородных связей выступают так называемая гидрофобные связи и взаимодействия соседних нуклеиновых оснований в полинуклеотидной цепи (sta ked for es, по-ви-димому, я—я-взаимодействия). —Ярил1. ред.].  [c.737]

    Макромолекула РНК, как правило, представляет с обой одну полинуклеотидную цепь, принимающую различные пространственные формы, в том числе и спиралео Зраз-ные. [c.664]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    В 1953 г. Дж, Уотсон и Ф. Крик сумели правильно интерпретировать данные рентгеноструктурного анализа ДНК, накопленные в лабораториях Р. Франклин и 14. Уилкинса, и на их основе построить модель пространственной структуры ДНК- Они показали, что макромолекула ДНК — это регулярная двойная спираль, в которой две полинуклеотидные цепи строго комплементарны друг другу. Из анализа модели следовало, что после расплетания двойной спирали на каждой из полинуклеотидных цепей может быть построена комплементарная ей новая, в результате чего образуются две дочерние. молекулы, не отличимые от материнской ДНК. Через пять лет М. Мезельсон и Ф. Сталь экспериментально подтвердили этот механизм, а несколько раньше (1956) А. Корнберг открыл фермент ДНК-полимеразу, кщ-орый на расплетенных цепях, как на матрицах, синтезирует новые, комплементарные им цепи ДНК. [c.6]

    Существует два принципиально различных подхода к определению нуклеотидной последовательности ДНК. Первый из них предложен А. Максамом и У. Гилбертом и основан на специфическом химическом расщеплении полинуклеотидной цепи. Последовательность операций при секвенировании ДНК методом Максама — [c.15]

    Образец анализируемой цепи ДНК делится на четыре равных порции, и условия химической. модификации каждой из них подбираются таким образом, чтобы в реакции участвовало либо только одно, либо преи.мущественно одно из двух пуриновых или пиримидиновых оснований пуриновые основания метилируют по Ы7-атому диметилсульфатом, пиримидиновые — расщепляют обработкой гидразином обработка химически,ми реагентами приводит в обоих случаях к появлению модифицированного мономерного звена, которое может быть легко выщеплено из полинуклеотидной цепи. [c.16]

    Важнейший параметр каждой кольцевой ковалентно замкнутой молекулы ДНК — порядок зацепления двух одноцепочечных колеа в ней. Он обозначается как Lk (или а) и в первом приближении равен числу пересечений одной полинуклеотидной цепи с другой двуспиральном кольце (рис. 18). Lk, таким образом, имеет целочисленные значения. Самое важное, Lk—величина постоянная (инвариантная) для данной ковалентно замкнутой кольцевой ДНК- [c.31]

    ДНК-полимераза I состоит из одного полипептида длиной 911 аминокислотных остатков (а. а.) (Л1г=102 000 D). Этот фермент отличается от прочих ДНК-полимераз Е. oli наличием 5 -экзонуклеазной активности. Фактически ДНК-полимераза I — это два фермента на одной полипептидной цепи ограниченный протеолиз расщепляет эту ДНК-полимеразу на большой и малый фрагменты с разными активностями. Большой субфрагмент ДНК-па имеразы I (называемый также ДНК-полимеразой Кленова или фрагментом Кленова) обладает полимеризующей и З -экзонуклеазной (корректирующей) активностями. Л алый субфрагмент несет 5 -экзонуклеаз-ную активность. 5 -экзонуклеаза ДНК-полимеразы I действует на 5 -конец полинуклеотидной цепи только в составе дуплекса и отщепляет от него как моно-, так и олигонуклеотиды. Направление действия 5 -экзон клеазы совпадает с направлением полимеризации новой цепи ДНК, т. е. в ходе полимеризации экзонуклеаза расчищает дорогу для полимеразы (рис. 29). Подобные свойства ДНК-полимеразы I соответствуют ее функциям в клетке эта полимераза удаляет различного рода дефекты нз ДНК в ходе репарации и служит вспомогательной поли- [c.48]

    В процессе деления клетки двойная спираль, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей с участием ферментов в качестве катализаторов и исходных цепей ДНК в качестве матриц. Новая цепь, синтезирующаяся на одной из исходных цепей, идентична другой исходной цепи, в результате чего сохраняется комплементарность. Таким образом, когда процесс завер- [c.457]

    Первое поколение дочерних молекул ДНК состоит наполовину из старых и наполовину из новых полинуклеотидных цепей. Зто было подтверждено замечательным экспериментом на бактериальных культурах с использованием меченых атомов ( N разд. 20.17). Об этом опыте в 1958 г. сообщили М. Мезельсон и Ф. У. Шталь. Они выращивали несколько поколений кишечной палочки Es heri hia oli) на питательной среде, в которой присутствовало соединение азота с высоким содержанием тяжелого изотопа Выделенная в этом случае бактериальная ДНК имела большую молекулярную массу (атомы в молекуле были те же) и большую плотность, чем ДНК, полученная из бактерий, выращенных на обычной среде. Различие плотности определяли методом, называемым ультрацентрифугированием в градиенте плотности. Раствор хлорида цезия помещают в центрифужную пробирку и вращают ротор с такой скоростью, чтобы получить центробежное ускорение, в 100 000 раз превышающее ускорение земного тяготения. В центробежном поле концентрация ионов цезия, имеющих высокую плотность (вместе с компенсирующими их заряд ионами хлора), будет выше в периферическом конце пробирки. Таким образом, по направлению к периферии в пробирке создается градиент плотности. Большие молекулы, вроде ДНК, при введении в пробирку и создании силового поля концентрируются в зонах, где их плотность равна плотности раствора хлорида цезия, т. е. в периферическом конце пробирки. Мезельсон и Шталь перенесли бактерии, выращенные в среде, обогащенной [c.460]


Смотреть страницы где упоминается термин Цепи полинуклеотидные: [c.188]    [c.41]    [c.386]    [c.13]    [c.20]    [c.20]    [c.29]    [c.457]    [c.459]    [c.461]    [c.343]    [c.393]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.13 , c.15 , c.16 , c.23 , c.26 , c.37 , c.45 , c.59 , c.71 , c.78 , c.93 , c.262 , c.265 , c.269 ]

Молекулярная биология (1990) -- [ c.13 , c.15 , c.16 , c.23 , c.26 , c.37 , c.45 , c.59 , c.71 , c.78 , c.93 , c.262 , c.265 , c.269 ]




ПОИСК







© 2025 chem21.info Реклама на сайте