Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодические коллоидные структур

    Современное состояние проблемы, равно как и собственные исследования периодических коллоидных структур, изложены в монографии И. Ф. Ефремова .  [c.320]

Рис. 110. Электронная микрография периодической коллоидной структуры в суспензии полистирола (г = 950 А (IO. М. Яковлев). Рис. 110. Электронная микрография периодической коллоидной структуры в <a href="/info/308208">суспензии полистирола</a> (г = 950 А (IO. М. Яковлев).

    На базе указанных представлений в дальнейшем были даны основы теории желатинирования и образования периодических коллоидных структур [13], находящиеся в соответствии с экспериментальными данными, полученными рядом исследователей. [c.13]

    Однако и до такого сжатия периодическая коллоидная структура обычно находится в состоянии только временного равновесия. Время от времени то одна, то другая частица перескакивает из положения равновесия в узле квази-кристаллической решётки в ближайшую потенциальную яму. Возникающие дефекты квазикристаллической решетки множатся необратимо и не могут залечиваться . Таким образом, в отличие от кристаллов, периодические коллоидные структуры находятся часто не в состоянии термодинамического равновесия, а [c.319]

    Периодические коллоидные структуры образуют многие вирусы, бактерии, монодисперсные золи металлов, золи пятиокиси ванадия, латексы. [c.319]

    XIV. 5. ПЕРИОДИЧЕСКИЕ КОЛЛОИДНЫЕ СТРУКТУРЫ (ПКС) [c.282]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    Периодические коллоидные структуры — это пластичные или ква-зипластичные твердые тела с присущим для них характерным сочетанием прочности, упругости, пластичности и вязкости. Прочность системы зависит от энергии связи между частичками, которая обусловлена природой, размером и формой их, а также свойствами адсорбционных слоев. [c.20]

    Такие квазикристаллические образования, называемые периодическими коллоидными структурами, широко распространены в природе и технике. Не имея возможности в рамках настоящего курса остановиться подробно на свойствах этих интересных и важных в практическом отношении систем, отсылаем читателя к монографии Ефремова [22]. [c.277]

    В стесненных условиях особенно заметна роль стабилизирующих слоев на поверхности частиц дисперсной фазы. Поверхностные слои соседних частиц перекрываются, что приводит к значительному росту сил отталкивания. Наступает момент, когда возникает равновесие между силами отталкивания и притяжения. Дальнейшее увеличение концентрации способствует росту этих сил при сохранении их равенства. Расиоложеине частиц на дальних расстояниях фиксируется, что отвечает образованию так называемой периодической коллоидной структуры (ПКС), для которой характерна высокая упорядоченность частиц. При концентрациях, соответствующих образованто периодической структуры, резко возрастает вязкость системы. Если система стабильна благодаря наличию электрических слоев, то ее разлсижение достигается введением небольших количеств электролитов. [c.373]


    Развитие электрономикроскопической техники за последнее время показало, что такие квазикристаллические образования, называемые периодическими коллоидными структурами, широко распространены в природе и технике. Не имея возможности в рамках настоящего курса остановиться подробно на свойствах этих интересных и важных в практическом отношении систем, отсылаем читателя к монографии Ефремова [16]. На фотографиях, взятых из этой книги (рис. ПО и 111), мы видим квазикристал-лическое строение структурированных систем, наличие дальнего порядка и дефектов, характерных для реальных кристаллов. ПКС образуются преимущественно за счет фиксации частиц во втором минимуме. Расчет, проведенный Ефремовым и Нерпиным для моделей коллективного взаимодействия, показал, что симметричное расположение частиц как раз отвечает минимуму потенциальной энергии системы. [c.284]

    Чаще встречаются периодические коллоидные структуры, занимающие весь объем жидкой среды и ограниченные со всех сторон стенками или поверхностью раздела с воздухом. В этом случае потенциальная яма, в которой удерживается каждая частица, образуется в результате сложения сил отталкивания со стороны соседних частиц. Поэтому соответственные [расстояния могут быть меньше, чем абсциссы дальних потенциальных ям, — система, как принято говорить, находится в стенсненном состоянии. Прн еще большем сжатии , когда средние расстояния между соседними частицами будут меньше абсцисс потенциальных барьеров, произойдет нарушение равновесия, часть частиц слипнется при попадании в ближние потенциальные ямы, оставшиеся же частицы смогут сохранить периодическое расположение. [c.319]

    Характерная особенность периодических коллоидных структур — определенная степень упорядочения расположения ее структурных элементов. Пространственная сетка многих ПКС представляет собой правильную квазикристаллнческую решетку, в которой, как и в [c.19]

    Теория ДЛФО ограничивается рассмотрением потенциальных кривых для двух дисперсных частиц. Это объясняется тем, что коагуляция, протекающая в разбавленных золях, определяется парным взаимодействием частиц, положенным, как мы видели, в основу теорий кинетики коагуляции Смолуховского и Н. А. Фукса. Однако для определения условий устойчивости концентрированных золей необходимо учитывать коллективные взаимодействия частиц. Такие золи не только обладают практически достаточной стабильностью, но часто обнаруживают и периодическое расположение частиц аналогично узлам кристаллической решетки. Подобные периодические коллоидные структуры образуют, например, некоторые вирусы и монодисперсные латексы. Условием периодичности, конечно, является прежде всего достаточная монодисперсность системы. Как отметили еще Бернал и Фанкухен, периодическое расположение свидетельствует о дальнодействующих силах между коллоидными частицами. [c.295]

    Эта идея получает в настоящее время все большее подтверждение, и круг явлений, охватываемых ею, непрерывно расширяется. Расчеты Ефремова и Нерпина показывают, что с увеличением числа частиц в агрегате глубина второго минимума увеличивается, способствуя, таким образом, протеканию коллективных взаимодействий. Установлено также, что во многих случаях образуются периодические коллоидные структуры (ПКС), обладающие дальним порядком и представляющие собой квазикристаллические образования они могут служить не только моделями, но и реальной основой для организованных биологических структур (см. главу XIV). [c.254]

    Такие квазикристалли1 еские образования, называемые периодическими коллоидными структурами, широко распростра- [c.304]


Смотреть страницы где упоминается термин Периодические коллоидные структур: [c.64]    [c.319]    [c.429]    [c.42]    [c.319]    [c.5]    [c.148]    [c.255]    [c.320]   
Курс коллоидной химии 1984 (1984) -- [ c.245 ]

Курс коллоидной химии 1995 (1995) -- [ c.269 ]

Курс коллоидной химии (1984) -- [ c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Общие свойства периодических коллоидных структур

Периодические коллоидные структуры в природе

Периодические коллоидные структуры в промышленности

Структуры периодические

Теоретические основы взаимодействия дисперсных частиц и процессов образования периодических коллоидных структур



© 2025 chem21.info Реклама на сайте