Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственная сетка

    Учитывая значения энтропии, соответствующие выделенным участкам кривых, можно считать, что в первой области скоростей сдвига имеет место течение жидкости с практически неразрушенной структурой, когда разрушаемые связи успевают полностью восстанавливаться. Принципиально иная картина имеет место в области более высоких скоростей деформирования - разрушение поперечных связей не компенсируется в условиях больших силовых полей и жидкость течет с постоянной вязкостью предельно разрушенной структуры. Соответственно возрастает величина энтропии по сравнению с начальным участком течения. Промежуточная область скоростей сдвига, характеризуемая максимальными значениями энергетических параметров течения, отражает процесс тиксотропного разрушения пространственной сетки, вся кривая в целом - течение структурированной жидкости со структурой коагуляционного типа. [c.24]


    Теоретически прочность системы может быть оценена сравнением локальных напряжений с прочностью связей между кинетическими единицами высокополимера, образующих пространственную сетку. Разрушение гранулы наступает при значительной деформации и разрыве химических связей этих кинетических единиц. Мерой прочности связей служит силовая постоянная, которая определяет сопротивление молекулы деформации равновесной конфигурации за счет растяжения химических связей [68]. Силовая [c.328]

    У катионитов ионогенные группы могут диссоциировать на малоподвижные анионы и подвижные катионы. Таким образом, если активной группой является —ЗОдН, анион 50з достаточно прочно связан с каркасом ионита, в то время как катион Н+ является подвижным и может быть заменен на другой ион такого же знака. Поэтому каркас ионита можно рассматривать как полианион, отрицательный заряд которого компенсируется зарядом подвижных атомов противоположного знака (противоионов). Каркас ионообменных высокомолекулярных органических соединений состоит из пространственной сетки углеводородных цепей, в которой закреплены группы, несущие заряд (50з и др.). [c.143]

    Переплетаясь и сращиваясь между собой, волокна мыла образуют пространственный структурный каркас смазки (см. рис. 107). Смазки, в которых загустителями являются твердые углеводороды (углеводородные смазки), по тонкой структуре близки к мыльным смазкам. Парафин или церезин, кристаллизуясь в масле, образуют пространственную сетку, пронизывающую всю толщу смазки. [c.187]

    Под кристаллической сеткой подразумевается пространственная сетка, состоящая из соединенных между собой или переплетающихся кристаллов, пронизывающая маточный раствор кристаллической решеткой именуется сочетание молекул вещества, расположенных в строго определенном для данного вещества повторяющемся порядке и образующее монокристалл этого вещества. [c.68]

    Структура ионообменников представляет собой высокомолекулярную пространственную сетку углеводородных цепей, в которой закреплены химически активные ионогенные группы кислотного или основного характера, способные к ионизации и обмену ионов. Химическая природа ионогенных групп определяет способность ионообменника к ионизации, следовательно, к ионному обмену в зависимости от pH. [c.224]


    Для полимеров, обладающих пространственной структурой, не происходит полное взаимное растворение полимера и низкомолекулярного компонента, так как пространственная сетка является жесткой надмолекулярной структурой, действующей подобно непроницаемой мембране для остальной массы растворителя и препятствующей дальнейшему увеличению размеров образца полимера. Этот факт и учитывается в уравнении (4.4), где в условиях равновесия величина [c.313]

    Механические свойства полимеров зависят не только от их химической природы, степени сшивки пространственной сетки, но и от ориентации макромолекул и надмолекулярных структур, пластификации, степени наполнения и др. Ориентирование цепей макромолекул и надмолекулярных структур приводит к анизотропии свойств полимера. Обнаруживается резкое увеличение его прочности Б направлении ориентации. Этот факт широко используется в процессах прядения волокон и получения пластических масс. Ориентирование макромолекул способствует кристаллизации и увеличению хрупкой прочности полимера. [c.391]

    К числу методов слепого поиска принадлежит метод прямого упорядочения вариантов по критерию эффективности (метод пространственной сетки). Суть его состоит в следующем. Для каждого независимого оптимизируемого параметра Х1 технически допустимая зона определения делится на равные отрезки. Значения параметров на концах полученных отрезков образуют новую, уже дискретную область определения этих параметров. Число отрезков выбирается по допустимому количеству точек дискретной области определения функции 3  [c.125]

    К преимуществам метода прямого упорядочения вариантов по критерию эффективности следует отнести простоту алгоритма и программы оптимизации, малый объем необходимой машинной памяти и возможность нахождения абсолютного оптимума Главным недостатком метода является большое время работы ЭВМ, так как приходится рассчитывать все возможные варианты сочетаний значений оптимизируемых параметров. Этот недостаток вытекает из сущности рассматриваемого метода, при котором в процессе поиска экстремального значения целевой функции 3 результаты расчета предыдущих вариантов используются в очень малой степени. Для примера укажем, что если каждый из независимых параметров и варьируемых внешних факторов будет принимать по 5 значений, то при общем числе этих параметров и факторов, равном 10, потребуется рассчитать и сравнить приблизительно 10 миллионов вариантов. Для случая, когда число независимых параметров и внешних варьируемых факторов равно 20 и каждый из них принимает по 5 значений, общее число возможных вариантов возрастает до 10 . Кроме того, этот метод позволяет определить лишь приближенное положение точки оптимума, соответствующее значению функции цели в узлах пространственной сетки. [c.126]

    Если в выражении (79) степень структурных связей пространственной сетки д (т) моделировать законом [c.124]

    Снижение СОЕ катионита (табл. 2) при обработке различными реагентами можно объяснить сольватацией активных центров катионита. Повышение констант скорости (табл. 4) при этерификации диэтиленгликоля монокарбоновыми кислотами в присутствии набухшего катионита, видимо, объясняется различными эффектами разрыхления пространственной сетки и улучшением условий доступа реагирующих молекул к активным центрам катализатора. [c.115]

    Снижение СОЕ катионита (табл. 2) при обработке различными реагентами и повышение констант скорости (табл. 4) при этерификации, видимо, можно объяснить сольватацией активных центров катионита и различными эффектами разрыхления пространственной сетки полимера [2]. Термически обработанный катионит при 160° в гликоле (как катализатор этерификации) менее эффективен из-за процессов его десульфирования, константа скорости этерификации энантовой кислоты снижается до 16,65 (табл. 4) [c.116]

    В нефтяных дисперсных системах с жидкой дисперсионной средой возможно формирование в одних случаях макрофаз. в других — пространственной сетки, в которой силы сцепления в контактах достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. В обоих случаях представляется возможным управлять протекающими процессами и соответственно физико-химическими свойствами НДС. Наиболее эффективное управление достигается при оптимальном сочетании механических и физико-химических воздействий на регулирование ММВ в системе с помощью ПАВ и изменения свойств дисперсионной среды. [c.119]

    Разбавленные агрегативно устойчивые дисперсные системы не образуют пространственной сетки из частиц дисперсной фазы (структуры), и поэтому их реологические свойства близки нли подобны свойствам дисперсионной среды. Зависимость вязкости таких систем от концентрации дисперсной фазы описывается уравнением Эйнштейна  [c.185]


    Влияние РТФ на свойства диенуретановых эластомеров показано на примере полибутадиендиолов радикальной полимеризации в работе [71]. Реакционная способность концевых групп в жидких каучуках и их функциональность оказывают существенное влияние на свойства эластомеров вследствие особенностей формирования пространственной сетки при структурировании жидких каучуков. [c.443]

    При достаточной концентрации твердых углеводородов частицы кристаллов образуют пространственную сетку из дисперсной фазы. При высокой вязкости дисперсионной среды пространственная сетка иммобилизует жидкую фазу и препятствует ее движению. [c.27]

    Из результатов определения содержания золь-фракции и расчета доли эластически активного материала пространственной сетки резин на основе жидких каучуков эти параметры, как было показано в ряде работ [72—74], несравненно больше зависят от глубины реакции структурирования, чем у серных вулканизатов обычных каучуков. Гелеобразование при синтезе резин на основе жидких каучуков начинается лишь при глубине структурирования около 60%, а в обычных каучуках уже на начальной стадии процесса, когда сшивание прошло всего на несколько процентов. Вследствие этого даже относительно небольшие изменения глубины структурирования жидких каучуков могут привести к значительным колебаниям доли активного материала сетки в таких резинах. [c.443]

    При быстром охлаждении нефть, минуя состояние метастабильности, оказывается в лабильной области. В результате происходит быстрое образование большого числа кристаллов во всем объеме нефти. При этом существенное значение имеет, как бьшо отмечено ранее, наличие смол. В отсутствии или недостатке смол парафин кристаллизуется в виде мелких частиц и образует пространственную решетку, превращая нефть в структурированную жидкость. Структурный каркас образуется вследствие молекулярного сцепления в тех местах, которые плохо изолированы адсорбированными естественными ПАВ. В присутствии достаточного количества смол предотвращается образование пространственной сетки, благодаря сольватной оболочке, образуемой смолами вокруг кристалликов парафина. [c.51]

    В последующем отдельные исследователи возражали против описанного выше объяснения механизма структурного застывания нефтяных продуктов и делали попытки дать иное разъяснение этому явлению. Так, например, указывалось, что структурное застывание масел наступает в ряде случаев до того момента, когда кристаллы парафина образуют сплошную пространственную сетку. К. О. Рамайя [28] считает, что структура застывшего продукта обусловливается не кристаллической сеткой парафина, а образующимися в масле мицеллами высокоассоциированных масляных молекул , которые, по мнению Рамайя, и обусловливают образование гелеобразной структуры и застывание масла. Д. О. Гольдберг [29, не отрицая роль парафина в застывании нефтяных продуктов, объясняет явление самого застывания возникновением вокруг кристалликов (частичек) парафина сольватных оболочек, которые, по мнению Д. О. Гольдберг, достигают якобы таких размеров, что иммобилизуют всю массу масла. [c.15]

    Наличие в каучуке СКИ-3 специфического геля, создающего редкую пространственную сетку, не может привести к повышению когезионной прочности сажевых смесей из-за разрушения рыхлого геля в процессе приготовления смеси, в то время как плотный, неразрушающийся гель ухудшает рабочие свойства смеси, вызывает шубление при вальцевании, препятствует наложению корда и т. д. [14, с. 73—91]. [c.227]

    Развиваются работы по получению привитых сополимеров с пространственной сеткой на основе жидких каучуков и олиго-эфиракрилатов [66, с. 16]. Реакции в таких композициях приводят одновременно к вулканизации, прививке и гомополимеризации При этом гомополимер, являясь, как правило, нежелательным побочным продуктом, в данном случае выполняет роль активного наполнителя. Из жидких олигодиенов и олигоэфиракрилатов без введения специальных наполнителей методом литья были получены резиновые изделия, дтличающиеся высокими прочностью, стойкостью к старению и другими ценными свойствами. [c.445]

    Таким образом, можно утверждать, что на стадии предварительного набухания гранулы полимера практически сохраняют свою прочность. Этому факту можно дать следующую физическую интерпретацию. При набухании происходит изменение конформаций макроцепей сополимера (относительное перемещение, а также вращение звеньев и участков макроцепи). Конфигурация малых кинетических единиц (пространственное расположение атомов в молекуле) при этом остается неизменной. При равновесном набухании пространственная сетка сополимера вытягивается до пре дела без деформации химических связей в ней. Возникающие локальные напряжения целиком компенсируются изменением конформации макроценей сополимера. Если путем выпаривания убрать растворитель из гранулы, то цепи вернутся в прежнее положение и гранула примет первоначальные размеры. [c.329]

    Полпмерами называют соединения, в которых более или менее регулярно чередуется большое число атомных группировок, соединённых химическим связями в длишше яинеЦше цепи, в цели о болевыми ответвлениями или в пространственные сетки. [c.12]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    В работе [31] исследовано влияние твердой поверхности на надмолекулярные структуры в сшитых полимерах и найдено, что характер надмолекулярных структур определяется типом подложки и зависит от густоты пространственной сетки полимера. В этой работе впервые проведен послойный анализ на разных расстояниях от поверхности и показано, что по мере удаления от поверхности характер морфологии изменяется и наблюдается переход от мелкоглобулярной плотноупакованной структуры к крупноглобулярной структуре с агрегацией глобул. Влияние поверхности на надмолекулярные структуры распространяется на большое расстояние от поверхности. Лишь при удалении более чем на 160 мкм структура пленок, сформированных на твердой поверхности, становится аналогичной структуре в объеме. [c.70]

    Изображая графически зависимости Ig rio и Igrim от величины, обратной температуре /Т, согласно уравнению (78), получим прямую линию, по наклону которой АЯ/2,3/ можно определить АН—теплоту (энтальпию) вязкого течения нефти. Теплота активации вязкого течения уменьшается при аномалии вязкости от 7,0 до 4,1 ккал/моль (рис. 67). Это также свидетельствует о разрушении пространственной сетки в процессе течения. [c.123]

    Порционное разбавление не оказывает заметного влияния, на размеры кристаллов оно вызывает разрушение межкристалличе-ских связей, структурной пространственной сетки суспензии, что при наличии крупных кристаллов облегчает отделение жидкой фазы суспензии от твердой. При однократном разбавлении дистиллятного сырья осадок получается толстым и рыхлым он содержит большое количество жидкой фазы, поэтому на его промывку расходуется много растворителя. При порционном разбавлении осадок получается плотным, зернистым и промывка его протекает значительно эффективнее. При добавлении порции растворителя жидкая фаза суспензии становится ненасыщенной по отношению к парафину, что приводит к растворению наиболее мелких кристаллических образований — зародышевых кристаллов и межкристалличе-. ских связок. [c.141]

    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    В сплошной пространственной сетке илн каркасе, относящейся к конденсационным (кристаллизационным) структурам. ([)ормнруются самые прочные фазовые контакты. Такие структуры относятся к наиболее прочным — II типу. Все эти тниы структур имеют различную прочность и играют важную роль ири реализации технологии нефти. [c.130]

    Описанный ироцесс расталкивания макромолекул проявляется в сильно разбавленных системах. При повышении концентрации цепные макромолекулы распрямляются вследствие их взаимодействия, происходит образование ассоциатов. Наименьшая концептрацня, при которой молекулы полимера начинают приходить в контакт между собой, была названа Штаудингером критической концентрацией. Эта концентрация увеличивается с уменьшением молекулярной массы, ухудшением качества растворителя (образование более плотных клубков) и повышением температуры. Дальнейший рост концентрации раствора полимера приводит к образованию пространственной сетки в результате взаимного переплетения цепей макромолекул — к образованию студня. Таким образом, линейные полимеры способны образовывать студни как в результате набухания, так и при увеличении концентрации полимера в растворителе (т. е. процесс образования студня может протекать с разных сторон). [c.318]

    Под структурой тел обычно поннмают пространственное взаимное расположение составных частей тела атомов, молекул, мелких частиц. Структу )а разбавленных агрегативно устойчивых дисперсных систем по ряду свойств очень похожа на структуру истинных растворов. Основное отличие состоит в том, что в дисперсных (гетерогенных) системах частицы дисперсной фазы и молекулы дисперсионной среды сильно различаются по размерам. Увеличение концеитрацин дисперсной фазы приводит к взаимодействию ее частиц подобному ассоциации молекул и ионов в истинных растворах. Изменение свойств дисперсных систем с ростом концентрации происходит постепенно до тех пор, пока не наступит коагуляция частиц. В коллоидной химии понятия структуры и етруктурообразования принято связывать именно с коагу-ля[и1ей, в процессе которой происходит образование пространственной сетки из частиц дпсперсной фазы с резким увеличением прочности системы [c.355]

    Объем свободной упаковки, как и седиментационный объем, возрастает (снижается критическая концентрация структурообра-зования) с увеличением дисперсности, анизометрии частиц дисперсной фазы и образующихся первичных агрегатов. Соприкасаясь своими концами, частицы и их агрегаты образуют ажурную пространственную сетку. Чем выше дисперсность и сильнее анизомет-рня частиц и агрегатов, тем при меньщей концентрации появляется предел текучести. Например, в суспензии кизельгура (легкая пористая горная порода), частицы которого имеют вид пленкоподобных неправильных пластинок, предел текучести наблюдается уже при концентрациях 3,0% (об.). Большими объемами свободной упаковки обладают суспензии с пластинчатыми мицеллами гидроксидов железа и алюминия, с игольчатыми мицеллами пятиоксида ванадия и др. Нитевидные молекулы органических полимеров, [c.375]

    Если течение не является типичным свойством твердообразных систем, что особенно характерно для конденсационно-кристаллизационных структур, то реологические зависимости строят по отношению к деформации, а не к ее скорости. Типичная кривая зависимости деформации от напряжения для твердых тел показана на рис. VII. 15. Прямолинейный участок кривой ОА отвечает пропорциональности деформации напряжению сдвига в соответствии с законом Гука (VII. 3). До напряжения Ри отвечающего точке А, размер и форма тела восстанавливаются после снятия нагрузки. Важными параметрами такой системы являются модуль упругости (модуль Юнга) и модуль эластической деформации. Считают, что в суспензиях с коагуляционной структурой модуль упругости (модуль быстрой эластической деформации) характеризует твердую фазу дисперсий, а модуль медленной эластической деформации — пространственную сетку с прослойками дисперсионной среды (возможно скольжение частиц относительно друг друга без разрыва связей). Напряжение Р соответствует пределу текучести (правильнее — пределу упругости). С увеличением напряжения проявляется пластичность, а после его снятия — остаточные деформации. При напряжении Рг (точка ) происходит течение твердообразной системы. При дальнейшем увеличении напряжения до величины Рз (точка В), соответствующей пределу прочности, обычно наблюдается нег<оторое упрочнение тела, затем наступает разрушение системы. [c.380]

    Эластическими свойствами отличаются студни с коагуляцион-ной структурой, примером которых являются студни желатины, агара, мучное тесто. Такие студни образуются в растворах линейных и разветвленных ВМС в не очень хороших растворителях. В хороших растворителях студни обычно ие образуются. Студни с коагуляционной структурой могут разрушаться с повьплением температуры и переходить в состояние раствора. Этот ироцесс называется плавлением студня. Студни конденсационного типа образуются ири трехмерной полимеризации в растворе или в результате набухания пространственного полимера. Химические связи между макромолекулами не разрушаются прн нагревании, поэтому такие студни не плавятся. Типичным примером студней с конденсационной структурой являются ионообменные смолы, степень набухания которых находится в прямой связи со степенью сшивки пространственной сетки. [c.381]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    Согла15нО Одной из них, наиболее распространенной, кристаллизация парафина, приводящая к застудневанию масла, рассматривается как процесс частичной или структурной коагуляции диснерсдой сЬазУ. формирующей в системе парафин"—масло пространственную сетку или каркас, который, иммобилизуя жидкую фазу, препятствует ее движению [2]. [c.88]

    Если глубина BTojioro минимума велика, то независимо от высоты потенциального барьера происходит дальнее взаимодействие частиц, фиксируемых иа расстояниях порядка 0,1 — 1 мкм. Образовавшиеся пары взаимодействующих частиц совершают совместные колебательные и поступательные движения и могут, присоединяя другие частицы, превращаться в тройники и более сложные структуры. При достаточной концентрации дисперсной фазы система полностью структурируется, образуя сплошные пространственные сетки (рис. III.2). [c.71]

    Одним из таких факторов является содержание смолистых соединений, участвующих в формировании дисперсных частиц как сольватообразующие компоненты. Однако только изменением концентрации смол вышеуказанную аномалию объяснить трудно. Как видно из табл. 1.3, содержание смол в нефтях, расположенных на втором участке кривых, практически остается постоянным. При формировании дисперсной фазы важно соотношение смол к компонентам, потенциально способньп образовать ядро микрочастиц. При малых значениях этого соотношения количество смол может оказаться недостаточным для создания необходимой сольватной оболочки вокруг образующихся кристалликов твердых частиц, прежде всего парафина, что приведет к формированию пространственной сетки и образованию геля при более низком содержании парафина и при более высоких температурах. Соотношение смол к потенциальным твердым компонентам и влияние их на температуру застывания исследованных групп нефтей представлены на рис. 1.4. [c.34]

    Наиболее существенным фактором, влияющим на состояние нефти как дисперсной системы, является температура. Любое образование новой твердой макрофазы в виде отложений на поверхности возможно лишь после возникновения в объеме нефти диспергированной твердой микрофазы /4, 30/. Поэтому при температурах, выше температуры насыщения нефти парафинами, заметных отложений на поверхности оборудования не наблюдается. Опасность образования отложений возникает лишь ниже температуры насыщения, когда образуется твердая микрофаза и нефть превращается в свободнодисперсную систему, в которой дисперсные частицы не связаны друг с другом и способны независимо перемещаться в дисперсионной среде под влиянием броуновского движения или силы тяжести. При дальнейшем снижении температуры, после достижения характерного для каждой нефти ее критического значения, благодаря повышению концентрации дисперсной фазы нефть превращается в связнодисперсную систему - гель, в которой дисперсные частицы связаны друг с другом за счет межмолекулярных сил и образуют своеобразные пространственные сетки, формируя структурные каркасы и превращая нефть в структурированную жидкость. В гелеобразном состоянии дисперсные частицы практически теряют возможность свободно перемещаться внутри системы. Температура гелеобразова-ния является весьма важной технической характеристикой дисперсной системы как минимальная температура, при которой в отсутствии механического воздействия система способна находиться в подвижном состоянии. [c.46]

    Формирование дисперсной структуры нефти определяется, в основ-но.м, температурой и при наличии газа - также давлением в системе. Закономерности протекания процессов, составляющих первую стадию, рассматривались ранее. В пределах температур, в которых возможно, образование отложений, гидравлическое состояние системы на протекании процессов, составляющих первую стадию, практически не сказывается. Влияние гидравлической ситуации на состояние нефти как дисперсной системы проявляется лищь при температурах, ниже температуры гелеобразования, когда механическое перемешивание способно разрушить пространственную сетку, составленную из сшитых кристалликов парафина, и поддерживать нефть в свободнодисперсном состоянии. Между тем именно гидравлическое состояние в системе определяет особенности протекания последующих двух стадий. Закономерности перемещения частиц дисперсной фазы к местам формирования отложений, а также баланс сил, обеспечивающий закрепление частиц на поверхности подложки, полностью обуславливаются гидравлической ситуацией в системе. [c.54]


Смотреть страницы где упоминается термин Пространственная сетка: [c.72]    [c.520]    [c.35]    [c.35]    [c.45]    [c.89]    [c.99]    [c.74]    [c.29]   
Физико-химия полимеров 1978 (1978) -- [ c.72 ]

Структура и свойства полимерных покрытий (1982) -- [ c.141 ]

Долговечность полимерных покрытий (1984) -- [ c.169 ]

Полиэфирные покрытия структура и свойства (1987) -- [ c.129 , c.130 ]

Химия и технология полимеров Том 1 (1965) -- [ c.20 , c.104 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Сетки



© 2025 chem21.info Реклама на сайте