Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаянс, строение коллоидных частиц

    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, Л, Н, Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, [c.317]


    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, А. Н. Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, растворы высокомолекулярных и высокополимерных соединений, - имеют другое, весьма отличное от лиофобных золей строение. В настоящее время мицеллярная теория строения коллоидных частиц сохраняет свое значение только для лиофобных (гидрофобных) золей. [c.402]

    Электрические свойства дисперсных систем объясняют особенностью их строения, заключающейся в образовании мицелл (рис. VI.8). В центре мицеллы находится кристаллическое тело /, названное по предложению Пескова агрегатом. На нем, согласно правилу Панета—Фаянса (см. разд. 11.42), адсорбируются ноны 2, способные достраивать его кристаллическую решетку. Эти ионы сообщают агрегату электрический заряд и называются потен-циалопределяющими. В результате образуется ядро мицеллы, несущее электрический заряд, равный сумме электрических зарядов адсорбировавшихся на агрегате потенциалопределяющих ионов. Ядро создает вокруг себя электрическое поле, под действием которого к нему из раствора притягиваются противоионы, образующие вокруг ядра диффузионный слой 4 и частично входящие в состав адсорбционного слоя 3. Ядро совместно с адсорбционным слоем противоионов называется коллоидной частицей. Электрический заряд последней равен алгебраической сумме электрических зарядов потенциалопределяющих ионов и ионов адсорбционного слоя. Так возникает на частице заряд, определяющий -потенциал (дзета-потенциал) системы. Знак его соответствует знаку электрических зарядов потенциалопределяющих ионов. Противоионы диффузионного слоя мицеллы, относительно свободно [c.278]

    Строение коллоидных частиц. В основу современных представлений о строении коллоидных частиц легли работы советских ученых А. В. Думанского, Н. П. Пескова, С. М. Липатова, А. Н. Фрумкина, а также зарубежных исследователей Паули, Фаянса, Кройта и др. Строение коллоидных частиц удобнее рассматривать, если проследить процессы образования частиц. [c.150]


    В отношении строения и химического поведения коллоидных частиц теория Фаянса приводит к тем же выводам, что и теория Паули. [c.194]

    В основу современных представлений о строении коллоидных частиц легли работы многих исследователей, среди которых следует назвать А. В. Думанского, Н. П. Пескова, С. М. Липатова, А. Н. Фрум-кина, зарубежных ученых Паули, Фаянса, Кройта и др. В соответствии с этими представлениями ниже рассматриваются схемы строения коллоидных частиц. Эти схемы удобнее рассматривать, если проследить процессы образования частиц. [c.195]

    Коллоидная частица имеет сложное строение. В центре частицы находится ядро, представляющее собой скопление большого количества молекул или атомов вещества, образующего золь. На поверхности ядра из дисперсионной среды адсорбируются ионы того или иного знака. Совокупность ядра с адсорбированными на поверхности ионами называется коллоидной частицей или гранулой. Обычно адсорбируются главным образом ионы, в составе которых находятся элементы или атомные группировки, имеющиеся в веществе ядра частицы (правило Носкова — Фаянса). Ионы, адсорбирующиеся на поверхности ядра и обусловливающие величину и знак электрического заряда частицы, называются потенциалопре-деляющими ионами. Они образуют так называемый не.подвижный слой ионов. Ионы противоположного знака (противоионы) частично адсорбируются на поверхности ядра частицы (т. е. входят в состав неподвижного слоя), а частично располагаются в жидкости вблизи гранулы (диффузный или подвижный слой ионов). Совокупность гранулы с диффузным облаком противоионов называется мицеллой. [c.165]

    Молекулы Agi объединяются в практически нерастворимые частицы, в которых ионы Ag+ и I- образуют кристаллическую решетку. Исследования 3. Я. Берестневой и В. А. Каргина при помощи электронного микроскопа показали, что новообразованные частицы вначале имеют аморфное строение, затем постепенно в них происходит кристаллизация. Если AgNOg и К1 взяты в эквивалентных количествах, то частицы-кристаллики растут, достигая значительной величины, превосходящей размеры коллоидных частиц, и быстро выпадают в осадок. Если же одно из исходных веществ взято в небольшом избытке, то оно служит стабилизатором, сообщающим устойчивость коллоидным частицам Agi. Так, при избытке AgNOa в растворе будет находиться большое количество ионов Ag и NO3-. Однако построение кристаллической решетки Agi согласно правилу Панета — Фаянса может идти только за счет ионов, входящих в ее состав в данном случае за счет ионов Ag+. [c.150]

    Если поверхность имеет ионное строение, то в соответствии с известным правилом Панета — Фаянса она адсорбирует тот ион, который образует с каким-либо из собственных ионов труднорастворимое соединение. Например, коллоидные частицы иодида серебра адсорбируют из раствора хлорида натрия ионы хлора и заряжаются отрицательно, так как ионы хлора (из раствора) образуют с ионами серебра (Agi) труднорастворимый хлорид серебра. [c.69]


Смотреть страницы где упоминается термин Фаянс, строение коллоидных частиц: [c.78]    [c.175]   
Курс коллоидной химии (1976) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы

Коллоидные частицы строение

Фаянс



© 2025 chem21.info Реклама на сайте