Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллярная теория строения коллоидной частицы

    Мицеллярная теория строения коллоидной частицы [c.317]

    Согласно общепринятой мицеллярной теории строения коллоидных растворов, золь состоит из двух частей мицелл и интерми-целлярной жидкости. Мицелла — это структурная коллоидная единица, т. е. частица дисперсной фазы, окруженная двойным электрическим слоем. Интермицеллярной (т, е, межмицеллярной) жидкостью называют дисперсионную среду, разделяющую мицеллы, в которой растворены электролиты, неэлектролиты и ПАВ, являющиеся стабилизаторами коллоидной системы. Частицы дисперсной фазы лиофобных золей имеют сложную структуру, которая зависит от условий получения золей. [c.396]


    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, Л, Н, Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, [c.317]

    Общепринятой теорией строения коллоидных частиц в настоящее время является мицеллярная теория. Согласно этой теории всякий золь состоит из двух частей мицелл и иитермнцеллярной жидкости. Под интермицел-лярной (т. е. разделяющей мицеллы) жидкостью понимают [c.150]

    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, А. Н. Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, растворы высокомолекулярных и высокополимерных соединений, - имеют другое, весьма отличное от лиофобных золей строение. В настоящее время мицеллярная теория строения коллоидных частиц сохраняет свое значение только для лиофобных (гидрофобных) золей. [c.402]

    Представления о строении полимерных тел прошли сложную эволюцию от мицеллярных теорий к современным концепциям структурной физики полимеров (см. Структура, Надмолекулярная структура. Кристаллическое состояние, Аморфное состояние. Коллоидные полимерные системы). Несостоятельность мицеллярных теорий строения линейных гомополимеров с однородными по строению цепями макромолекул (напр,, целлюлозы, натурального каучука) заключается в отсутствии физич. причин существования устойчивых фазовых частиц коллоидных размеров. Развитие представлений о макромолекулах, не отличающихся от малых молекул природой сил межмолекулярного взаимодействия, исключило возможность научного обоснования мицеллярных представлений о строении полимеров и их р-ров. Здесь следует еще раз подчеркнуть, что имеются в виду макромолекулы, лишенные дифильности в упомянутом выше смысле. Гибкие макромолекулы, содержащие разнородные по полярности участки, в определенных условиях могут давать микро-гетерогенные системы типа лиофильных золей. При этом лиофобные группы макромолекул объединяются в ядре коллоидной частицы (напр., белковой глобулы), а лиофильные образуют ее поверхностный слой. [c.129]


    Относительно строения коллоидных частиц высокомолекулярных соединений существовали различные точки зрения. Наибольшее значение для последующего развития химии высокомолекулярных соединений имели мицеллярная теория К- Мейера и Г. Марка и особенно мак-ромолекулярная теория Г. Штаудингера. [c.50]

    В результате ряд исследователей (Марк, Мейер и др.) предложили первоначальную мицеллярную теорию строения целлюлозы. Согласно этой теории полагали, что целлюлозные волокна построены из агрегатов молекул - мицелл, имеющих поверхность раздела и связанных межмицеллярными сипами. На раннем этапе исследований (30-е гг. нашего столетия), когда реальную длину цепей целлюлозы еще не установили, строение целлюлозных волокон описьгаали моделью бахромчатой мицеллы и каждую мицеллу со своей бахромой (разупорядоченные окончания молекул) на обоих концах рассматривали как индивидуальную частицу. При этом понятие мицеллы еще практически совпадало с аналогичным понятием коллоидной химии. [c.236]

    Таким образом, был сделан вывод, что коллоидные растворы представляют собою системы гетерогенные, точнее—ультрамикро-гетерогенные, и что в каждой коллоидной системе и суспензиях следует различать две фазы—дисперсную, как совокупность взвешенных частиц раздробленного вещества, и дисперсионную среду, как фазу непрерывную (конечно, не в абсолютном смысле). Вскоре вслед за этим была создана мицеллярная теория строения коллоидных растворов, по которой сложную коллоидную частицу— микроагрегат—стали называть мицеллой. [c.10]

    Общепринятой в настоящее время теорией строения коллоидных частиц являегся мицеллярная теория, разработанная П. П. Веймарном, А. В. Думанским, Н. П. Песковым, С. М. Липатовым и другими учеными. [c.313]

    Сторонники этих представлений связывали роль ускорителей при вулканизации помимо прочего также и с их поверхностно-активными свойствами, способностью вследствие этого адсорбироваться на поверхности мицелл (Норлэндер) и пептизировать продукты первичной стадии взаимодействия каучука и серы (Вильямс, 1934 г.). Вместе с тем высказывались положения, которые в дальнейшем были забыты вместе с мицеллярной теорией строения каучука, но не утратили интереса и до наших дней. Так, Б. А. Догадкин [3] считал, что ускорители являются пептизаторами не мицелл каучука, а частиц серы, и полагал, что следствием этого процесса является ускорение гетерогенной реакции серы с каучуком в результате увеличения поверхности раздела между ними. Не менее интересны воззрения Фейхтера [1, с. 368], который в 1924 г. высказал предположение, что с каучуком реагируют активные продукты взаимодействия серы и ускорителя (без выделения активной серы), а ускоритель, не вступивший в реакцию, сохраняется в вулканизате в виде твердых кристаллических частиц (образующих, конечно, конденсационно-кристаллическую коллоидную структуру). [c.12]

    Экспериментальные наблюдения за поведением частиц в электрическом поле показали, что устойчивость обусловлена наличием одноименных электрических зарядов на поверхности коллоидных частиц. Одновременно выяснилось, что для устойчивости золя (лиофобного) необходимым условием является присутствие в нем еще и третьего компонента—стабилизатора. Стабилизаторами чаще всего могут быть те или иные электролиты. Для объяснения природы заряда на поверхности коллоидных частиц и многообразных явлений в золях (например, коагуляции, старения) в начале нашего столетия были заложены основы мицеллярной теории строения золей (Дюкло, Фрейндлих, Паули), вы- винувшей понятие о мицелле, как новой, более высокооргани- ованной, дискретной единице вещества. [c.17]


Смотреть страницы где упоминается термин Мицеллярная теория строения коллоидной частицы: [c.318]    [c.156]   
Смотреть главы в:

Физическая и коллоидная химия -> Мицеллярная теория строения коллоидной частицы

Физическая и коллоидная химия -> Мицеллярная теория строения коллоидной частицы




ПОИСК





Смотрите так же термины и статьи:

Коллоидная теория

Коллоидные частицы

Коллоидные частицы строение

Мицеллярная теория

Мицеллярный



© 2024 chem21.info Реклама на сайте