Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная поверхность

    К укрупнению частиц осадка приводит также процесс агломерации частиц. Он объясняется тем, что многие осадки состоят из кристаллов с ионной решеткой. Поэтому положительные ионы на поверхности одной частицы могут притягивать к себе отрицательные ионы поверхности другой, в результате чего частицы прилипают друг к другу и образуют агломераты, имеющие более или [c.104]


    Зависимость теплоты адсорбции от степени заполнения при физической адсорбции на ионных поверхностях [c.112]

    При использовании магнитных линз, рассеивающих пучок ионов, поверхность ядерных мембран может достигать нескольких квадратных [c.55]

    На примере кристаллического осадка это легко проиллюстрировать следующей схемой (рис. 15). Если рассмотреть схематический разрез кристалла, в котором положительные ионы правильно чередуются с отрицательными, то очевидно, что положительный ион А, находящийся внутри кристалла, окружен в пространстве шестью отрицательными ионами (а, 6, с, и двумя ионами, находящимися в соседних плоскостях) и является электростатически уравновешенным. Напротив, положительный ион В на поверхности кристалла испытывает притяжение лишь пяти отрицательных ионов (/, а, / и двух ионов, находящихся в соседних плоскостях), т. е. он обладает избыточным положительным зарядом, за счет которого может притягивать отрицательные ионы из раствора. Сказанное относится и к отрицательно заряженным ионам. Поверхность осадка притягивает из раствора и катионы, и анионы (а также [c.110]

    Газ Нг быстро сорбируется на металлах переменной валентности и медленнее — на окислах металлов и таких элементах, как углерод (графит) и германий [24]. На окислах сорбция часто приводит к образованию гидроокисей. Поэтому нри нагревании мон ет десорбироваться НгО [25, 26]. Кроме того, в некоторых случаях может происходить обратимая сорбция. В этом случае предполагают, что с ионами поверхности металла образуется соединение типа гидрида. В случае металлов газ Нг быстро сорбируется даже при 78° К с теплотой сорбции, которая может достигать 40 ккал или более. Теплота сорбции медленно надает с заполнением поверхности катализатора вплоть до насыщения, после чего она приближается к нулю [27, 27а] . Значительное количество данных подтверждают точку зрения, что сорбция на металлах является прямой реакцией со стехиометрией 1 1 с ионом металла такая реакция приводит к образованию гидрида [28, 29]  [c.546]

    Особенности распределения электронного заряда в молекулах адсорбата и на поверхности адсорбента (пониженная или повышенная электронная плотность) проявляются при адсорбции на полупроводниках. В этих случаях проявляются специфические взаимодействия донорно-акцепторного типа, по своей природе близкие к рассмотренным выше специфическим взаимодействиям на гидроксилированных и ионных поверхностях. Часто эти взаимодействия переходят в еще более специфические и сильные с образованием поверхностных хемосорбционных комплексов. [c.500]


    С ЭТОЙ точки зрения зарождение цепи всегда заключается в реакции образования атома или радикала с ненасыщенной валентностью, как, например, в реакции (а). Это может происходить в результате термической диссоциации какой-нибудь легко распадающейся молекулы (например, 12ч=г 1 + 1), при столкновении двух молекул, обладающих повышенной энергией, при ударе молекулы о стенку сосуда или в особенности при химическом взаимодействии ее с атомами или ионами (поверхности стенки или находящимися в объеме сосуда), способными вызвать при этом образование радикала, В разных реакциях, а также в зависимости от условий, температуры и пр, тот или другой из этих путей приобретает главную роль. [c.485]

    Эти ионы адсорбируются ионами поверхности, причем окисный ион катализатора адсорбирует положительный ион эфира, ион же металла—отрицательный ион в результате протекают конкурирую-ш,ие реакции с ацетат-ионом  [c.135]

    В условиях аналитического осаждения формирование осадка происходит быстро и поэтому кристаллы образуются разных размеров и несовершенные по форме. Немалый вклад в улучшение структуры кристаллических осадков вносит старение. Под старением понимают все необратимые структурные изменения, которые происходят в осадке при настаивании его под маточньпиг раствором. При атом уменьшается общая поверхность осадка за счет укрупнения кристаллов и совершенствуется форма кристаллов. Первое связано с тем, что растворимость кристаллов зависит от их размера. Мелкие кристаллы, обладая большей поверхностной активностью, имеют большую, чем крупные кристаллы, растворимость. При настаивании осадка мелкие кристаллы постепенно растворяются, раствор становится пересыщенным по отношению к крупным кристаллам и растворенное вещество осаждается на них, увеличивая их размер. Совершенствование формы кристаллов связано с непрерывным процессом обмена ионов поверхности кристалла с ионами раствора. Покинув несовершенное (с большой поверхностной энергией) место кристалла, ион переходит в раствор, а затем переходит в твердую фазу и занимает на поверхности кристалла место с меньшей энергией. Поэтому настаивание кристаллических осадков под маточным раствором широко используется в гравиметрии для получения однородных по цисперсности крупнокристаллических осадков. [c.14]

    С ЭТОЙ точки зрения каталитические реакции на поверхностях следует понимать так, что поверхность подобна полярному растворителю, на котором молекулы реагентов образуют подвижной двумерный ионный раствор. Адсорбированные ионы двигаются как бы по шахматной доске отрицательные—над положительными ионами поверхности, положительные—над отрицательными ионами поверхности. Заряженные части молекул в некоторых случаях могут отделяться, свободно вращаться одни в поле других, что ведет к образованию новых конечных молекул. Вследствие ионизации молекулы поверхности, состоящей из окислов металлов, адсорбируют ионы реагентов, причем всегда ион металла притягивает анион. Адсорбированные ионы передвигаются по поверхности, благодаря чему устанавливается равновесие между ионизированной и неио-низированной формами. [c.136]

    Адсорбция на ионных поверхностях [c.71]

    Во всех приведенных примерах речь шла о физически адсорбированных молекулах, периферические диполи которых были направлены в сторону отрицательных ионов поверхности. В возбужденном состоянии эти молекулы обладают значительно более полярным характером. Поглощение света вызывает смещение электрона в молекуле в направлении от поверхности, в результате чего образуется значительно более прочная связь с тем отрицательно заряженным ионом, на котором эта молекула адсорбирована [143]. Для иллюстрации этого положения приведем один пример. Структура молекулы -оксиазобензола передается формулой [c.88]

    Исходной стадией гетерогенного катализа обычно является адсорбция реагентов. Как уже отмечалось в гл. 2, адсорбцию следует отличать от абсорбции. Адсорбция-это связывание молекул с поверхностью, тогда как абсорбция означает поглощение молекул в объеме другого вещества. Адсорбция происходит вследствие чрезвычайно высокой реакционной способности атомов или ионов на поверхности твердого вещества. В отличие от таких же частиц в объеме твердого вещества они имеют ненасыщенные валентные возможности. Благодаря способности поверхностных атомов или ионов к образованию связей молекулы из газовой фазы или раствора могут связываться с поверхностью твердого вещества. В действительности не все атомы или ионы поверхности обладают реакционной способностью, так как на поверхности могут быть адсорбированы различные примеси (загрязнения), которые занимают многие потенциально реакционноспособные центры и блокируют дальнейшую реакцию. Места поверхности, на которых могут адсорбироваться реагирующие молекулы, называются активными центрами. Число активных центров, приходящееся на единицу массы катализатора, зависит от природы катализатора, от способа его приготовления и обработки непосредственно перед использованием. [c.28]


    За счет ионов поверхность стеклянного капилляра заря- [c.409]

    Адсорбцию ионов поверхностью кристалла, в состав которого входят ионы той же природы, можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки способным адсорбироваться ионом. Кристаллы достраиваются лишь теми ионами или атомами, которые входят в их состав. Силы, под влия- [c.271]

    Природа локального взаимодействия определяется электронной структурой отдельного атома или иона поверхности в гетерогенном катализе, структурой изолированного или комплексного иона в гомогенном катализе. Ограниченность только коллективного подхода [c.168]

    Наблюдаемый эффект обусловлен специфической адсорбцией ионов поверхностью катализаторов и должен приводить к изменению каталитических свойств поверхности. Изменение энергии связи водорода с поверхностью при переходе от КОН к НВг составляет примерно 21 кДж/моль, что должно существенно влиять на активность катализаторов. [c.191]

    Если к золю добавить желатину, белок прикрепляется к частицам золя и образует вокруг них защитную пленку. Ионная поверхность желатины сообщает частицам дополнительный за- [c.338]

    По схеме Штерна—Грэма, плотная часть двойного электрического слоя (слой Штерна — Гельмгольца), примыкающая к заряженной потенциалопределяющими ионами поверхности, в свою очередь может состоять из внутренней и внешней частей. Внутренняя часть, расположенная непосредственно вблизи заряженной поверхности, образована специфически адсорбирующимися на данной поверхности частично или полностью дегидратированными ионами плоскость их максимального приближения к поверхности отстоит от поверхности на расстояние х=й 1 (внутренняя плоскость Гельмгольца). Внешнюю часть составляют гидратированные ионы, не проявляющие столь энергичной специфической адсорбции плоскость их максимального приближения к поверхности расположена на расстоянии х=й2>(1 (это внешняя плоскость Гельмгольца). Специфически адсорбирующиеся ионы, входящие в состав внутренней части слоя Штерна— Гельмгольца, могут иметь как противоположный (рис. VII—3), так и одинаковый с потенциалопределяющими ионами знак (рис. VII—4). Это зависит от соотношения энергии электростатического взаимодей- [c.178]

    Наконец, между молекулой адсорбата и молекулами, атомами или ионами поверхности адсорбента может возникнуть настоящая химическа- реакция с образованием нового поверхностного химического соединения. В этом случае говорят о хемосорбции. Примером хемосорбцил является адсорбция кислорода поверхностями металлов. Хемосорбция с поверхности может распространиться и на объем адсорбента, переходя в обычную гетерогенную реакцию. [c.439]

    Специфические взаилюдействия неполярных молекул, обладающих большими квадрупольными моментами и --электронными связями, с гидроксильными группами и ионами поверхности адсорбента [c.499]

    Рассмотренным выше взаимодействиям функциональных групп молекул адсорбата с гидроксилами и с ионами поверхности адсорбента аналогичны взаимодействия с этими группами и ионами совершенно неполярных в целом молекул, у которых, однако, электронная плотность распределена резко неравномерно и сосредоточена на периферии, например, молекул, обладающих большим квадрупольным моментом (молекулы азота) или обладающих --электронными связями (молекулы непредельных и ароматических углеводородов). Такие молекулы с электростатической точки зрения можно рассматривать как муль-типоли в целом они неполярны, однако в определенных местах распределение электронной плотности является резко неравномерным. Простейшим примером неполярой молекулы—квадруполя является молекула СО2, где диполи связей СО расположены линейно и направлены в противоположные стороны. [c.499]

    Мультиплетами были названы отдельные небольшие участки поверхности катализатора, состоящие из нескольких атомов или ионов, расположенных закономерно в соответствии со строением кристаллической решетки катализатора. Каталитическая активность имеет место в тех случаях, когда расположение этих атомов или ионов в поверхностном слое катализатора находится в геометрическом соответствии с расположением атомов в молекулах реагирующих веществ. При адсорбции такой молекулы содержащиеся в ней атомы под воз цействием соответствующих атомов или ионов поверхности катализатора и частично связываясь сними могут ослаблять связи между собой. В зависимости от вида атомов или ионов поверхностного слоя, расстояний между ними и геометрической закономерности в их расположении могут ослабляться те или другие связи в реагирующих молекулах. Этим и объясняется специфичность действия катализаторов. [c.497]

    Для этой реакции характерно превращение ковалентной спязи исходной молекулы в ионную связь конечной молекулы. Тогда в качестве нулевого приближения можно рассматривать пересекающиеся поверхности, одиа из которых отвечает взаимодействию атома М с ковалентной люлекулой Хг ( ковалентная поверхность), а другая — взаимодействию иона с X —X ( ионная поверхность). Линия пересечения этих поверхностей определяется условием компенсации разности потенциала ионизации атома М и сродства к электрону молекулы Xg кулоновским притяжением между М и парой Х —Х. Для таких реакций типичные величины координаты точки пересечения составляют 5—10 А. На столь больших расстояниях взаимодействие меясду ионным и ковалентным состояниями оказывается таким малым, что приближенно истинная поверхность потенциальиой энергии может быть построена из участков ковалентной и ионпой поверхностей, линия пересечения которых является линией пересечения диабатических поверхностей потенциальной энергии [98]. [c.68]

    Теория рассматривае-г не просто взаимодействие молекул с поверхностью катализатора, а взаимодействие отдельных атомов в молекуле реагента с определенными геометрически правильньши группировками атомов шит ионов поверхности катализатора (мультиплетами). [c.179]

    Установлено, что специфичность реакций галогенидов с катионами, имеющими заполненные оболочки большого радиуса, заключается, главным образом, в чередовании реакций гидрогалогениза-ции и дегидрирования. Механизм, вероятно, заключается в поляризации адсорбированных веществ ионами поверхности. Высокая активность катионов малого радиуса (ВРд, А1С1з) хорошо известна и может быть использована во всех рассматриваемых процессах, которые катализируются кислотами. [c.27]

    В отличие от поверхности полярных адсорбентов, образованной ионами, поверхность активного угля образована электронейтраль-ными (ковалентная связь) атомами углерода и почти лщпена электрически заряженных центров, аполярна. Вследствие этого электростатические силы имеют при адсорбции на угле второстепенное, очень малое значение. Основными же адсорбционными силами являются силы дисперсионные, наиболее слабые из прочих сил молекулярного взаимодействия. Этим объясняются многие свойства активных углей. [c.235]

    С другой стороны, энергетическая неоднородность поверхности, присутствие обменных катионов приводят к различию в свойствах связанной воды. Свойства молекул воды, связанных обменными ионами поверхности твердой частицы, отличаются от свойств воды в объеме тем больше, чем выше плотность заряда нона.В глинистых минералах количество воды, связанной наиболее прочно, больше при наличии поливалентных катионов в обменном комплексе. Кривые обезвоживания мо-ноионных форм бентонитов при нагревании (рис, 11.16) свидетельствуют о различном энерге-т-нческом состоянии связанной воды в зависимости от обменного катиона, его способности влиять яа трансляционное движение молекул воды. Чем выше упорядочивающее воздействие катионов (А1 +, Mg +), тем слабее трансляционное движение молекул воды и тем при более высоких температурах в пей разрываются водородные связн и она удаляется с [c.61]

    В результате адсорбции водорода по этому механизму следует ожидать усиления тенденции к хемосорбции кислорода, что в действительности и имеет место. Можно предположить, что кислород, хемосорбирующийся после десорбции воды, будет заполнять вакантные участки поверхности. В применяемом схематическом способе изображения поверхностных явлений мы представляем себе, что слой адсорбированных частиц располагается над слоем поверхностных атомов, В действительности последний часто имеет вакантные участки, которые адсорбирующиеся атомы или ионы могут заполнить. Как мы увидим в одном из последующих разделов (VII, 6), адсорбированные атомы или ионы и атомы или ионы поверхности адсорбента часто могут меняться своими местами, и поэтому адсорбция не ограничивается только внешней поверхностью. [c.64]

    Адсорбции аргона, кислорода и азота на хлористом калии посвящено большое число теоретических и экснериментальных исследований [36, 105, 106], В книге Брунауэра по физической адсорбции [17] дан обзор соответствующих работ. Все исследователи, ио-видимому, согласны с тем, что для адсорбированного атома или молекулы наиболее благоприятным является расположение непосредственно над центром элементарной ячейки кристаллической решетки. В этом месте электростатическая поляризация минимальна, а неполярные силы Ваи-дер-Ваальса имеют максимальную величину и играют преобладающую роль [107]. Дрэйн [37а[ обратил внимание на то, что энергия адсорбции азота на ионных поверхностях обычно выше, чем аргона или кислорода, в то время как в случае ненонных поверхностей внергии адсорбции вссх трех газов практически одинаковы. Он приписал этот эффект влиянию квадрупольного момента азота и рассчитал слагаемое энергии адсорбции, появляющееся в результате притяжения квадруполя молекулы азота полем кубической грани кристалла хлористого калия. Согласно этим расчетам, участки поверхности кристалла, расположенные тюносредственно над центром элементарной ячейки, по-прежнему остаются наиболее благоприятными для адсорбции. Найденное значение слагаемого энергии адсорбции, обусловленного притяжением [c.71]

    Как мы видели в разделе VI, 2, физическая адсорбция обычных газов на ионных поверхностях происходит вследствие совместного действия сил Ван-дер-Ваальса и поляризации молекул электрическими полями поверхности. Активные центры (раздел V, 12) оказывают влияние на оба эти эффекта. Поэтому реальные неоднородные поверхности ионных адсорбентов, состоящие из различных кристаллографических граней, межкристаллитных границ, ребер, вака.нтных мест и других типов активных участков, будут практически во всех случаях адсорбировать первые молекулы с относительно большой теплотой адсорбции. С увеличением степени заполнения теплота адсорбции будет заметно уменьшаться [177]. Крофорд и Томпкинс [178] при изучении адсорбции сернистого газа, двуокиси углерода и других газов на фтористом кальции и фтористом барии нашли, что теплоты адсорбции уменьшаются с увеличением количества адсорбированного газа. Они приписывают этот эффект неоднородности исследованных поверхностей, а также наличию различных кристаллографических плоскостей. [c.112]

    Молекулы способны адсорбироваться во втором слое только в том случае, если теплота нх адсорбции в этом слое выше, чем теплота сжижения (затвердевания), или энтропия молекул, когда они находятся во втором слое, выше, чем энтропия жидкого (или твердого) состояния. Этот критерий, основанный на энтропии, может быть полезным только для самого верхнего слоя, поскольку если поверх BTopoi o слоя адсорбируется третий слой, то энтропия второго слоя может и не быть очень высокой. Следовательно, для многослойной адсорбции требуется, чтобы теплота адсорбции во втором и последующих слоях (т. е. во всех слоях, кроме одного) была выше теплоты сжижения. Хилл [1, 189], а также Хэлси [174б] предполагают, что вандерваальсовое поле поверхности способно передавать энергию второму и последующим слоям. В дополнение следует указать, что при физической адсорбции на угле и на металлах, а также на ионных поверхностях адсор-бироваицые молекулы поляризуются (см. выше). Электрическое поле этих диполей может оказать влияние иа молекулы второго слоя и т. д. Это представление и лежит в основе наиболее старой концепции многослойной адсорбции 190]. К сожалению, многие авторы в более поздней литературе ошибочно утверждают, что, согласно старой концепции, многослойная адсорбция объяснялась одной поляризацией. На самом же деле последней обусловлен только небольшой избыток энергии сверх теплоты сжижения, позволяющий образоваться следующему слою. [c.118]

    Особый интерес для коллоидной химии представляет адсорбция ионов поверхностью кристалла, в состав которого входят иоиы той же природы. При этом адсорбцию можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки способным адсорбироваться ионом. Согласно Панету и Фаянсу, кристаллы достраиваются лишь теми ионами или атомами, которые входят в их состав. Например, кристаллы Agi, внесенные в раствор KI, адсорбируют на поверхности иодид-ионы. Если же [c.147]

    И десорбируется лишь при 180—400 °С, что свидетельствует о более прочном связывании при нагревании до температуры, несколько меньшей, чем 500 °С, образуются деформированные сило-ксановые группы по-видимому, они поляризованы и сдвинуты в сторону одного из атомов 5 , поскольку реадсорбция при 1 < 500 °С идет быстро. При I > 500 °С происходит перемещение поверхностных ионов, поверхность становится пассивной (рис. IX. 3, б) и реадсорбция идет очень медленно. [c.131]

    Для понимания многих свойств золей представляет интерес адсорбция ионов поверхностью кристалла. В этом случае адсорбцию можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки адсорбируемыми ионами. Согласно Панету и Фаянсу кристаллы достраивают лишь те ионы или атомы, которые входят в их состав. Например, осадок AgBr, полученный по реакции [c.360]

    В процессе осаждения на поверхности осадка всегда адсорбируются различные ионы. Адсорбируются главным образом те ионы, которые находятся в избытке в растворе. Так, если осаждать ионы серебра хлорид-ионами, то на поверхности осадка Ag l адсорбируются главным образом ионы серебра, которые имеются в избытке. Наоборот, при осаждении хлорида прибавлением нитрата серебра на поверхности адсорбируются главным образом ионы хлорида, так как в этом случае они будут в избытке. Рстественно, что осадок будет адсорбировать и другие ионы, имеющиеся в растворе, например ионы натрия или нитрата, однако в первую очередь, как правило, адсорбируются ионы, входящие в состав малорастворимого соединения. Адсорбированньге ионы кристаллической решетки называют первично адсорбированными ионами. Вследствие адсорбции ионов поверхность осадка приобретает положительный пли отрицательный заряд в зависимости от того, какой ион, входящий в состав осадка имеется в избытке. Под действием этого заряда в зоны раствора, непосредственно примыкающие к частицам осадка, притягиваются противоположно заряженные ионы, которые называют про-тивоионами. Эти противоионы удерживаются слабее по сравнению с первично адсорбированными ионами. Слой противоионов содержит также некоторое количество других катионов и анионов. Адсорбированными ионами на осадке будут преимущественно те ионы, которые имеют наибольший заряд. Если же заряды ионов одинаковы, то в первую очередь адсорбируются те ионы, которые образуют менее растворимые соединения с первично адсорбированными ионами. [c.188]

    Особый интерес для коллоидной химии представляет адс(фбция ионов поверхностью кристалла, в состав которого входят такие же или родственные ионы. В этом случае адс< цию можно рассматривать как кристаллизацию, т. е. достройку кристаллической решетки [c.67]


Смотреть страницы где упоминается термин Ионная поверхность: [c.63]    [c.67]    [c.37]    [c.72]    [c.157]    [c.144]    [c.59]    [c.216]    [c.92]    [c.170]    [c.73]   
Электроны в химических реакциях (1985) -- [ c.161 , c.162 , c.266 ]




ПОИСК







© 2025 chem21.info Реклама на сайте