Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кройт

    Советские ученые А. В. Думанский, Н. Н. Песков, С. М. Липатов, Л, Н, Фрумкин, а также зарубежные ученые Веймарн, Паули, Фаянс, Кройт на основе теории двойного электрического слоя создали так называемую мицеллярную теорию строения коллоидных частиц. Первоначально представление о мицеллярном строении частиц распространялось на все системы, изучаемые коллоидной химией, в том числе и на лиофильные золи. Однако последующие исследования показали, что лиофильные золи, или, точнее, [c.317]


    В ряде случаев для осаждения мно-Рис. 119. Схема коагуляции гих высокомолекулярных соединений (по Кройту) (белков, полисахаридов) снятие заряда [c.382]

    Потенциал фильтрации в реальной пористой среде выражается зависимостью Гельмгольца—Кройта [16] [c.120]

    Необходимо подчеркнуть, что формулы Гельмгольца (4.5) и Гельмгольца—Кройта (4.6) справедливы только при соблюдении следующих условий  [c.120]

    Основные закономерности коагуляции под действием электролитов. Изменение устойчивости золей при изменении содержания в них электролитов было известно уже первым исследователям коллоидных систем (Ф. Сельми, Т. Грэм, М. Фарадей, Г. И. Борщов). В дальнейшем благодаря работам Г. Шульца, У. Гарди, Г. Пиктона, О. Линдера, Г. Фрейндлиха, В. Паули, Г. Кройта, Н. П. Пескова, А. В. Думанского и других был накоплен обширный экспериментальный материал и сделаны основные теоретические обобщения. Огромный вклад в развитие теории электролитной коагуляции внесли советские ученые Б. В. Дерягин с сотр., П. А. Ребиндер и его школа. Экспериментально установленные закономерности при коагуляции электролитами известны под названием правил коагуляции  [c.105]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, обладают, как и истинные растворы, абсолютной агрегативной устойчивостью. Поэтому теории устойчивости лиофильных коллоидных систем (растворов высокополимеров), например теория Кройта, в которой агрегативную устойчивость желатины, агар-агара и некоторых других веществ объясняли либо электрическим зарядом, либо сольватацией, или, наконец, действием того и другого фактора одновременно, имеет в данное время только историческое значение. [c.363]

    Строение коллоидных частиц. В основу современных представлений о строении коллоидных частиц легли работы советских ученых А. В. Думанского, Н. П. Пескова, С. М. Липатова, А. Н. Фрумкина, а также зарубежных исследователей Паули, Фаянса, Кройта и др. Строение коллоидных частиц удобнее рассматривать, если проследить процессы образования частиц. [c.150]

    Экспериментальные исследования быстрой коагуляции дали хорошее подтверждение теории, несмотря на сложность подобных опытов. Особенно большое значение имеют работы Зигмонди (1917 г.), который, в сущности, и поставил эту проблему перед Смолуховским. Объектом таких исследований были чаще всего монодисперсные золи золота (Зигмонди, Вестгрен, Кройт, Туорила и др.), для которых определяли изменение во времени числа частиц в данном объеме. В табл. 5 приведены результаты Туорилы (1926 г.) для золя золота и суспензии каолина. [c.208]


    Схема Кройта. Учитывая механизм осаждающего действия электролитов и других водоотнимающих средств, Кройт предложил общую схему осаждения гидрофильных частиц (рис. 80), из которой видно, что необходимо удалить водную оболочку (спиртом) и снять заряд частицы (электролитом), причем последовательность этих воздействий Спирт [c.185]

    Поскольку в зaви имo tи Гельмгольца—Кройта содержание полярных компонентов в жидкости может проявляться только через диэлектрическую проницаемость, исследовалась зависимость-диэлектрических проницаемостей от содержания в них Уюлярных компонентов на установке, изображенной на рис. 20. Она состояла из куметра ВМ-311 (/), измерительного конденсатора с рубашкой охлаждения (2), ультратермостата ВЕ (3), контроль- [c.121]

    Следующий этап исследований — изучение потенциалов фильтрации углеводородных жидкостей. Исследования проводили на специальной установке. Основной ее элемент — измерительная ячейка, в которой находились образцы естественных кернов в виде цилиндров диаметром 0,03 м и длиной 0,04 м. Для измерений потенциалов использовали хлорсеребряные электроды диа метром 0,002 м, которые помещались в измерительную ячейку В процессе фильтрации создавались перепады давления в жидкости и наружного давления на керн. Потенциал регистрировали высокоомным потенциометром, а в качестве индикатора нуля использовали микроамперметр. Исследования проводили на экстрагированных образцах керна Арланского месторождения с проницаемостью 0,149 мкм (по воздуху) и пористостью 25,3 %. Методика измерения потенциалов фильтрации заключалась в следующем. Перед проведением экспериментов образец насыщали исследуемой жидкостью и при атмосферном давлении определяли потенциал асимметрии, который в опытах был равен 3 мВ. Результаты предварительных исследований показали практическую независимость потенциала фильтрации от нагрева ячейки на 3— 4 К, вызванного длительной работой электромагнита. Эксперименты проводились на модельных углеводородных жидкостях при различных скоростях фильтрации. При этом перепады давления составляли от 0,35 до 0,45 МПа. В процессе эксперимента заме-рялось количество отфилътровавщейся жидкости, а время фильтрации фиксировалось по секундомеру. Каждый эксперимент повторяли три раза. Полученные результаты для двух значений линейных скоростей фильтрации приведены на рис. 22. Эти результаты сравнивались с теоретической зависимостью, рассчитанной по формуле (4.6) при = 0,3 В. Как видно из рисунка, расчетные и экспериментальные данные совпадают, что свидетельствует о справедливости зависимости Гельмгольца—Кройта для принятых условий фильтрации полярных углеводородных жидкостей. [c.123]

    Подобные явления наблюдались и в случае других межфазных границ. В 1942 г. Трёльстра и Кройт определили аналитическим методом точку нулевого заряда галогенидов серебра, а -потенциал рассчитали по данным, полученным из электроосмоса. Точки нулевого заряда, найденные этими двумя методами, совпали (рис. 38), но зависимость -потенциала от концентрации электролита была не логарифмической, как в формуле Нернста для электрохимического потенциала, а имела гораздо более сложный вид. [c.145]

    В решении проблемы устойчивости коллоидных систем и их коагуляции наряду с выдающимися работами таких крупных зарубежных ученых, как Дюкло, ФреГшдлих и Кройт, весомый вклад внесли и наши советские ученые Н. П. Песков, А. И. Рабинович, П. А. Ребиндер и многие другие. [c.281]

    Учитывая механизм осаждающего действия электролитов и других десольватирующих веществ, Кройт в свое время предложил общую схему осаждения высокомолекулярных веществ (рис. 119). Для осаждения макромолекул, как видно на схеме, необходимо удалить водную оболочку (спиртом или другим дегидратирующим веществом) и снять заряд ее путем прибавления электролита. Последовательность этих операций не имеет значения. Схема Кройта учитывает только действие электролитов и дегидратирующих веществ, т. е. снятие заряда и водной оболочки, но совершенно не учитывает специфичности этих веществ. [c.382]

    На рис. VII, 17 приведены данные Трельстра и Кройта, характеризующие изменение фо- и -потенциалов частиц золя иодида серебра в зависимости от логарифма концентрации иодид-ионов, ( г ) растворе. Характер изменения обоих потенциалов с изменением концентрации потенциалопределяющих ионов вполне согласуется со всем сказанным выше. [c.194]

    Согласно Свену Одену, Гошу и Дхару, а также Кройту, антагонизм ионов объясняется тем, что при введении смеси электролитов ионы какого-нибудь одного вида, адсорбируясь на одноименно заряженных частицах, могут повысить их -потенциал, а следовательно, и устойчивсть системы. [c.302]

    Несмотря на то, что вопрос о связи между -потенциалом и агрегативной устойчивостью лиофобных коллоидных систем чрезвычайно сложен, нельзя отрицать мнение ряда ведущих ученых о том, что электрокинетический потенциал до сих пор остается одной из,важнейших характеристик устойчивости лиофобных коллоидов. На значение -потенциала для устойчивости коллоидных систем, и в частности латексов, указывали Кройт, Овербек, Гаузер и др.  [c.382]


    Растворы высокомолекулярных веществ представляют собой истинные растворы, термодинамически устойчивые и обратимые, не нуждающиеся в стабилизаторе. Частицы, содержащиеся в таких растворах, состоят не из множества малых молекул, как это имеет место у коллоидов, а представляют отдельные молекулы, правда, относительно очень больших размеров. В этом собственно и заключается отличие растворов высокомолекулярных соединений от растворов низкомолекулярных веществ. Тем не менее ряд ученых (Кройт, Бунгенберг де Йонг, И. И. Жуков, Эдельман и др.) относят растворы высокомолекулярных веществ к коллоидным растворам, причем некоторые называют растворенн те в них вещества обратимыми коллоидами (Кройт, Бунгенберг дё йонг), а некоторые — молекулярными коллоидами (И. И. Жуков, Эдельман). Нетрудно видеть, что основные особенности, присущие лиозолям, объясняются в случае растворов высокомолекулярных веществ просто большим размером молекул, приближающимся, а в некоторых случаях даже превосходящим размер коллоидных частиц. [c.416]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически. равновесном состоянии, агрегативно устойчивы, как и истинные растворы. Поэтому специальные теории о устойчивости лиофильных коллоидных систем, например теория Кройта и Бунгенберг де йонга, согласно которой агрегативную устойчивость растворов желатина, агара и других высокомолекулярных соединений авторы пытались объяснить либо электрическим зарядом частиц, либо сольватацией, либо, наконец, действием обоих этих факторов одновременно, представляют теперь только исторический интерес. [c.465]

    После первой мировой войны 1914—1918 гг. появляются работы представителей других стран — таких, как США, Голландия, Швеция и позднее Япония, а также Советского Союза работа Штерна по теории двойного слоя, работы Мюллера, Рут-герса, Кройта, Комагата, Овербека, Рабиновича, Уайта, Булла, Мак Бэна, А. И. Фрумкина, И. И. Жукова и его учеников. После второй мировой войны имеется некоторый спад по количеству специальных работ в этой области, и лишь в последние годы число научных статей опять возрастает, причем наиболее интенсивную работу ведут Советский Союз, США, Англия и Голландия. [c.13]

    Первые исследования электрофореза для частиц, видимых под микроскопом, были сделаны Сведбергом, Кройтом и Ван-Арке-лем, Маттсоном и др. Теория этого явления, давшая возможность определить скачок потенциала на границе раздела из электрофоретических наблюдений, была разработана Гельмгольцем и Смолуховским на основании закономерностей, наблюденных еще Квинке и другими авторами, а также представлений [c.125]

    Формирование коллоидной химии — части физической химии, которая уже давно выделилась в самостоятельную науку, связано с именами Т. Грэма, М. Смолуховского, А. Эйнштейна, Ж. Перрена, Г. Свердберга, Г. Р. Кройта, а также русских ученых Ф. Ф. Рейса, И. Г. Борщова, А. В. Думанского, [c.5]

    Проверку уравнения (У.4) провел путем счета частиц в поле зрения ультрамикроскопа Р. Жигмонди. Именно Жиг-монди обратился к Смолуховскому с предложением разработать теорию коагуляции и впервые подтвердил ее применимость. Впоследствии уравнение ( .4) проверяли А. Вест-грен, П. Туорила, Г. Кройт и др. Совпадение теории с экспериментом оказалось вполне удовлетворительным. [c.108]

    Работы Пескова положили начало учению об агрегативной и седиментационной устойчивости коллоидов. Для решения проблемы устойчивости и коагуляции коллоидных систем важное значение имеют работы Фрейндлиха, Кройта, Рабиновича, Дерягина и других ученых. [c.9]

    Работы, посвященные изучению коллоидно-дисперсных систем, выполненные зарубежными учеными В. Оствальдом, Жигмонди, Фрейндлихом, Сведбергом, Кройтом и др., также сыграли важную роль в развитии коллоидной химии. [c.8]


Библиография для Кройт: [c.148]    [c.39]    [c.395]    [c.212]    [c.196]    [c.37]    [c.31]    [c.150]    [c.254]    [c.492]    [c.383]    [c.255]   
Смотреть страницы где упоминается термин Кройт: [c.613]    [c.106]    [c.144]    [c.213]    [c.146]    [c.10]   
Коллоидная химия (1960) -- [ c.18 , c.40 , c.147 , c.180 ]

Химическая литература и пользование ею Издание 2 (1967) -- [ c.117 ]

Химическая литература и пользование ею (1964) -- [ c.111 ]

Краткий курс коллойдной химии (1958) -- [ c.18 , c.151 ]




ПОИСК







© 2025 chem21.info Реклама на сайте