Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окрашивание рубидием

    Большее сходство проявляется у лития с натрием (короткие периоды), у калия (аммония), рубидия, цезия (длинные периоды). Например, осадки с перхлорат-ионом дают калий, рубидий, цезий литий, натрий не дают. По окрашиванию пламени калий, рубидий, цезий трудно различить, а литий и натрий различаются. Гидротартрат не дает осадков с литием и натрием. [c.159]

    Соединения натрия легко можно идентифицировать по желтому окрашиванию пламени. Литий окрашивает пламя в карминовый цвет, калий, рубидий и цезий — в фиолетовый. Все эти элементы можно идентифицировать и в присутствии натрия, если применить синий светофильтр из кобальтового стекла. [c.519]


    Реакция окрашивания пламени. Летучие соли рубидия окрашивают бесцветное пламя горелки в розово-фиолетовый цвет. [c.234]

    Выполнение. Обмакивая проволочки в соответствующий раствор, вносить их по очереди в пламя газовой горелки и наблюдать различное окрашивание пламени солями щелочных металлов литий окрашивает пламя в малиновый цвет, натрий — в желтый, калий — в фиолетовый, рубидий и цезий — в розово-фиолетовый цвет. [c.200]

    Соли калия окрашивают пламя бунзеновской горелки в фиолетовый цвет аналогичное окрашивание вызывают летучие соли рубидия и цезия О спектральном определении элементов см. разд. 37.2.1.2. [c.599]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    Рубидий бромистый. Растворяют 100 г углекислого рубидия в 400 мл воды и раствор отфильтровывают. В полученный раствор добавляют порциями по 20—30 г жидкий бром (ч.д.а.). После введения каждой порции брома приливают 25%-ный водный раствор гндразин-гидрата до исчезновения окрашивания. Время реакции с каждой иорцией брома составляет 5—7 минут. Всего вводят 70—75 г жидкого брома и около 12 г гидразин-гидрата (в пересчете на М2Н4-Н20). В конце процесса раствор должен быть нейтральным (рНл б—7). Если среда щелочная, то добавляют небольшие количества брома и гидрата-гидразииа до установления нужного значения pH. Полученный раствор отфильтровывают и упаривают досуха. [c.89]

    Среди марганцевых квасцов наиболее устойчивыми являются цезиево-марганцевые СзМп(804)2 12Н2О, кристаллизующиеся в виде кораллово-красных кристаллов, плавящихся при температуре около 40° С в кристаллизационной воде с частичным разложением и окрашиванием плава в красновато-черный цвет. В воде марганцево-цезиевые квасцы гидролизуются с выделением гидратированной трехокиси марганца. Соответствующее соединение рубидия плавится с разложением уже при комнатной температуре. Еще менее устойчивы марганцево-калиевые квасцы [92, 93]. [c.122]


    Хотя мы и не разделяем пессимизма авторов, ранее рассматривавших вопрос [16], которому посвящен раздел 4.4, все же необходимо согласиться, что исследователи пришли к общему мнению лишь относительно самых общих черт спектров (облученных и термообработанных) образцов азидов. Кроме того, идентификация отдельных типов центров окрашивания иногда выглядит недостаточно обоснованной. В частности в более ранних работах исследователи слишком упрощали вопрос об образовании Г-центров в азидах. Из азидов щелочных металлов больше всего опытов проведено с азидами калия и натрия однако Хийл и Прингль [37] провели также предварительные исследования азидов рубидия и цезия. Образование центров окрашивания обычно вызывалось ультрафиолетовым облучением при 77° К и выше [27, 47а], [c.148]

    Пользуясь спектроскопическими приемами, Бунзен в 1860 г. старался определить, не находятся ли в разных природных продуктах, вместе с литием, калием и натрием, и другие еще неизвестные металлы, и вскоре нашел два новых щелочных металла, обладающих самостоятельными спектрами. Они получили свое название по цвету своих спектральных линий и по тому окрашиванию, которое сообщают пламени. Один, дающий красную и фиолетовую черты, назван рубидием, от rubidus — темнокрасный, а другой назван цезием от того, что он окрашивает бледное пламя в небесно-голубой цвет, что зависит от содержания яркоголубых лучей, проявляющихся в спектре цезия двумя голубыми ли1 иями (459 и 455). Оба металла находятся, как спутники На, К, но в малом количестве, однако рубидий встречается в большей пропорции, чем цезий. Количество окиси цезия и рубидия в липидолите обыкновенно не превышает В золе многих растений нашли также руби- [c.41]

    Заметим при этом, что калий, рубидий, цезий представляют металлы наиболее характерные,— хлор, бром, иод — галоиды наиболее резкие, они составляют крайние группы. Но, подобно тому, как в группе галоидов есть еще фтор, представляющий некоторые характерные различия, так точно в группе щелочных металлов содержится, кроме натрия, еще элемент легчайший — литий, придающий спектру столь характерное окрашивание. Его атомный вес Li=7, и среди галоидов такого легкого нет. [c.132]


Смотреть страницы где упоминается термин Окрашивание рубидием: [c.297]    [c.392]    [c.346]    [c.582]    [c.51]   
Аналитическая химия (1973) -- [ c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Окрашивание пламени рубидием

Рубидий



© 2024 chem21.info Реклама на сайте