Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабилитрон газоразрядный

Рис. 1-37. Схемы включения стабилитронов. а — схема включения газоразрядного стабилитрона б — схема включения полупроводникового стабилитрона в — двухкаскадная схема включения. Рис. 1-37. <a href="/info/22027">Схемы включения</a> стабилитронов. а — <a href="/info/22027">схема включения</a> газоразрядного стабилитрона б — <a href="/info/22027">схема включения</a> полупроводникового стабилитрона в — двухкаскадная схема включения.

    Простейшими стабилизаторами параметрического типа на постоянном токе являются схемы, использующие для стабилизации нелинейные характеристики газоразрядных и полупроводниковых стабилитронов. Вольт-амперная характеристика полупроводникового стабилитрона приведена на рис. 1-24,а, стабилитрона тлеющего разряда показана на рис. 1-36. Схема включения газоразрядного стабилитрона показана на рис. 1-37,а, такая же схема включения полупроводникового стабилитрона приведена на рис. 1-37,6. Для приведенных простых схем включения стабилитронов (рис. 1-37,а, б) коэффициент [c.82]

    Выпрямленное напряжение можно стабилизировать с помощью газоразрядных стабилитронов (рис. 12 и 44). Например, устройства на лампах МТХ90 могут работать при питании через стабилитроны типов СГШ и СГ4С. Следует заметить, что лампу МТХ90 можно питать переменным сетевым напряжением. Однако для этого нуж- [c.51]

    При стабилизации переменного тока в принципе используются те же стабилитроны, что и при стабилизации постоянных токов и напряжений. Однако при этом следует учитывать, что в случае газоразрядных стабилитронов и опорных диодов при достижении номинального напряжения верхняя часть полуволны синусоидального напряжения срезается. Выходное напряжение при этом будет трапецеидальным, и его амплитуда при колебаниях входного напряжения остается неизменной. Однако крутизна боковых участков полуволны и вследствие этого действующее значение напряжения изменяются. Это устраняется включением особых компенсационных схем [А.2.9, А.2.10]. Включая их непосредственно после ограничителей, можно вновь получить практически синусоидальное напряжение. [c.442]

    Однокаскадная схема на газоразрядном стабилитроне обеспечивает стабильность питающего напряжения в пределах 0,5% при токе нагрузки до 10—15 ма. Двухкаскадная схема обеспечивает стабильность около 0,2%. Недостатком стабилизаторов на газоразрядных стабилитронах является высокое рабочее напряжение (не менее 70 в), что вызывает необходимость гасить излишек напряжения и сильно понижать к. п. д. схемы. Кроме того, в некоторых случаях оказывается недостаточной величина отдаваемого тока, а параллельное включение стабилитронов недопустимо. Поэтому в последнее время для питания измерительных схем чаще применяют стабилизаторы на кремниевых стабилитронах. Они имеют низкое рабочее напряжение (единицы вольт) и очень малые размеры. [c.153]

    Л2—электрометрические лампы первого балансного каскада Л3, Л4—электронные лампы выходного балансного каскада Л5—газоразрядный стабилитрон реохорд компенсационной схемы йа—сопротивление коррекции шкалы iia—регулировка нуля (точно) R4—регулировка нуля (грубо)  [c.158]

    В схеме рис. 97 измерительной компенсационной схемой является цепь, включающая сопротивления Ri и R . Она питается напряжением, стабилизированным газоразрядным стабилитроном Jls. Переменное сопротивление Ri является реохордом, с которого снимается компенсирующее напряжение. Угол поворота реохорда фиксируется по шкале, имеющей градуировку в милливольтах и единицах pH. Сопротивление R2 служит для коррекции диапазона шкалы. В рабочей схеме прибора (см рис. 108) кроме того имеются переменные сопротивления для коррекции шкалы pH по буферным растворам. [c.160]


    Газоразрядные стабилизаторы. Газоразрядный стабилизатор (стабилитрон) представляет собою лампу с двумя холодными электродами, заполненную аргоном или неоном. При определенном напряжении на электродах стабилитрона в лампе возникает тлеющий разряд, и часть катода начинает светиться. Прп увеличении напряжения площадь свечения возрастает, сопротивление лампы падает и ток, проходящий через нее, увеличивается. Вследствие этого напряжение на стабилитроне, включенном по схеме, изображенной на рис, II.9, остается относительно постоянным при изменениях подводимого напряжения или сопротивления нагрузки в значительных пределах. Допустимые пределы изменения входного напряжения зависят от допустимых пределов изменения тока в стабилитроне, величину которых указывают в паспорте. [c.57]

    В измерительных схемах, питаемых от сети, стабилизация анодного напряжения ламп обычно осуществляется при помощи газоразрядного стабилитрона. При этом питание накала ламп производится нестабилизированным током, что в ряде случаев снижает общую стабильность работы прибора. [c.74]

    Газоразрядные стабилизаторы напряжения, или стабилитроны, по своей конструкции и технологии изготовления подобны неоновым лампам. Они имеют увеличенные размеры катода с целью увеличения рабочего тока. Для обеспечения большей стабильности при изготовлении стабилитронов проводятся лучшая очистка исходных материалов и удлиненная до нескольких суток тренировка. [c.21]

    Схема (рис. 36,а) может работать также на стабилитронах любого типа или на многоэлектродных газоразрядных лампах в диодном включении. [c.62]

    Из газоразрядных ламп наиболее широкое применение в реле времени находят неоновые лампы. Кроме них, могут быть использованы стабилитроны и тиратроны. [c.70]

    На рис. 94 показана измерительная схема мостового типа, польз уЯсь которой, можно получить шкалу с пределами разных знаков, т. е. с нулем в середине шкалы, что часто необходимо. Измерительную схему настраивают так же, как и в предыдущем случае,— при помощи сдвоенного переключателя Я (скачками) и переменного сопротивления Я (плавно). Схема питается от стабилизированного выпрямителя на полупроводниковых диодах, а стабилизация выпрямленного напряжения — газоразрядным стабилитроном Л. [c.153]

    Ех—входной сигнал 2—напряжение в аноде первого каскада Я3—напряжение на сетке второго каскада (первая производная входного сигнала) 4—напряжение в аноде второго каскада 5—напряжение на сетке тиратрона (вторая производная входного сигнала) Лх—двойной триод Л2—тиратрон Л ,. Д4—газоразрядные стабилитроны Сх, С2—конденсаторы дифференцнр> ющих контуров Й1, сопротивления дифференцируюищх контуров Рх—электромагнитное реле Рг. КЗ Сз, В—детали схемы, предотвращающей ложные срабатывания сигнализатора. [c.166]

    Поэтому для получения наибольшей чувствительности ускоряюшее напряжение для электронов обычно выбирают порядка 100 в и стабилизируют с помощью газоразрядных стабилитронов с точностью 0,5—1%. [c.94]

    Для определения полной вольт-амперной характеристики газоразрядной лампы ее подключают согласно схеме, представленной на рис. 60. При повышении напряжения источника питания Уа достигается определенное значение Уз, и амперметр покажет наличие тока в цепи (рис. 61). Падение напряжения на лампе будет почти равно напряжению источника питания. С увеличением Ус будет только возрастать ток разряда напряжение на электродах лампы изменяется незначительно. Это — область тихого разряда. При достижении определенной величины тока разряда (точка а) дальнейшее увеличение напряжения питания приведет к падению напряжения на электродах лампы и возрастанию его на балластном сопротивлении. Ток в цепи возрастает. Так будет продолжаться, пока не установится определенная для данной лампы величина тока (точка Ь), соответствующая возникновению тлеющего разряда. Если продолжать повышение напряжения питания, то это приведет лишь к увеличению тока разряда и возрастанию падения напряжения на балластном сопротивлении. Напряжение на электродах лампы будет оставаться почти неизменным. Это свойство тлеющего газового разряда используется в радиотехнике для стабилизации напряжения с помощью стабилитронов (СГ1П, СГ-2С и т. п.). Как только ток разряда достигнет величины, соответствующей точке перегиба с, увеличение Ус приводит к возрастанию и напряжения на электродах лампы, и тока разряда. Наступает аномальный тлеющий разряд, который в точке й скачком переходит в дуговой. При дуговом разряде увеличение напряжения питания приводит к уменьшению падения напряжения на лампе и возрастанию тока разряда (падающая [c.149]

    Полупроводниковые стабилизаторы. Для стабилизации напряжения низковольтных источников тока удобно применять полупроводниковые стабилизаторы. Простейшая схема стабилизацрш с использованием опорного диода (стабилитрона) приведена на рис. И. 15, а. Напряжение к стабилитрону прикладывается в запирающем направлении, поэтому он включается в схему полярностью, обратной по отношению к указанной на корпусе диода. При повышении запирающего напряжения неосновные носители в иоле перехода диода приобретают такую энергию, что могут вызывать лавинообразную ионизацию. Поэтому прп повышении напряжения сила тока через диод резко возрастает и напряжение на диоде, включенном по схеме, показанной на рпс. И.15, а, остается практически постоянным. Такая схема стабилизации работает аналогично схеме с газоразрядным стабилитроном и обеспечивает стабильность выходного напряжения при колебаниях входного напряжения и тока нагрузки. [c.60]


    Применение лампы СГ1П стабилизирует выпрямленное напряжение, подаваемое на конденсатор i. Вместо этого стабилитрона можно также использовать стабилитроны СГ5Б и СГ4С. Неоновую лампу МН5 можно тоже заменить любым газоразрядным диодом [c.71]


Смотреть страницы где упоминается термин Стабилитрон газоразрядный: [c.442]    [c.153]    [c.154]    [c.84]    [c.102]    [c.442]   
Современные электронные приборы и схемы в физико-химическом исследовании Издание 2 (1971) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте