Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжения определение компонентов

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]


    Ранее было показано, что при определенном значении налагаемого напряжения на электроды можно практически занершить выделение металла в процессе электролиза. Различные значения потенциалов разложения у разных ионов металлов позволяют при соответствующем выборе налагаемого напряжения определять их в смеси. Однако в процессе электролиза, как было показано ранее, э. д. с. образуемой системы постепенно возрастает, и по мере уменьшения потенциала катода может наступить момент, когда потенциал катода станет настолько низким, что начнется выделение второго компонента смеси. Для того чтобы избежать этого явления, необходимо строго контролировать потенциал катода и поддерживать его значение, отвечающим количественному выделеннк более электроположительного катиона. При этом в конце процесса электролиза ток падает практически до нуля, что и является критерием завершения электролиза данного катиона. Далее, изменяя потенциал электрода до значения, необ.ко-димого для количественного выделения второго, более электроотрицательного компонента, можно осуществить и это определение и т. д. Для проведения электролиза с контролируемым потенциалом служат так называемые потенцио-статы — приборы, поддерживающие строго заданные потенциалы катода или анода. Электролиз с контролируемым потенциалом обеспечивает большую селективность электрогравиметрического метода анализа, позволяет проводить разделение и последовательное определение ионов с близкими потенциалами разло жеиия Метод этот пригоден и для определения весьма малых количеств веществ. [c.439]

    Наблюдаемое (см. рис. 1У-34) для растворов неполярных веществ различие в характере изменения проницаемости объясняется следующим образом. При различной подвижности моЛекул компонентов смеси малоподвижные молекулы неполярного вещества частично блокируют вход в поры, а в порах сужают сечение потока жидкости. Поэтому в данном случае связанный слой проявляет свойства неньютоновских жидкостей [229], вязкость которых зависит от создаваемого напряжения сдвига, и течение этого слоя через поры начинается только при достижении определенного сдвигового напряжения — выше предельного. Поэтому зависимость проницаемости водных растворов полярных веществ от давления не должна экстраполироваться в начало координат, что и подтверждается экспериментальными данными (см. рис. 1У-13).  [c.219]

    Для экспериментального определения нормальных напряжений используют /--компоненту уравнения количества движения, которая (если пренебречь центробежными силами) равна  [c.166]


    Далее необходимо перейти к определению компонентов окружной и осевой деформаций и е . Для этого целесообразно пользоваться зависимостями между приращениями деформаций и напряжениями по теории течения [c.121]

    Для определения компонент тензора напряжений воспользуемся наиболее общей формой уравнения состояния аномально-вязкой [c.103]

    ОПРЕДЕЛЕНИЕ КОМПОНЕНТ НАПРЯЖЕНИЯ [c.40]

    В теории малых деформаций компоненты тензора напряжения деформируемого тела определяются из рассмотрения равновесия элементарного объема, выделенного в теле. Когда деформации малы, размеры тела в первом приближении не изменяются вследствие деформации. Таким образом, несущественно, относятся ли компоненты напряжения к элементарному объему в деформированном или в недеформированном теле. Для конечных деформаций это уже не так. Ниже отдается предпочтение определению компонент тензора напряжения по отношению к равновесию элемента объема в деформированном теле, т. е. будут рассматриваться компоненты напряжения в точке, координаты которой в недеформированном состоянии X, у, Z, а после деформации х = х и, у = у -j- V, z = Z V. Чтобы отличить определенные таким образом компоненты напряжения от рассмотренных выше для случая малых деформаций, будут использоваться обозначения Охх, уу и Т. Д. вместо а , а у и т. д. [c.40]

    Коэффициенты корреляции одной точки. Скорости частиц и жидкости в точке М статистически полностью определены, если известны средние значения трех компонент обеих скоростей и шести плотностей вероятности, соответствующих этим компонентам. Но этих средних значений и плотностей вероятности недостаточно для полного определения среднего течения, поскольку для расчета напряжений и компонент ускорения необходимо знать частные производные по времени от этих компонент и производные по координатам от компонент скорости. Например, в случае, когда концентрация с пренебрежимо мала по сравнению с 1, [c.122]

    Для определения компонентов присадки применяют конденсированную искру (напряжение 15 кв, индуктивность. 0,13 мгн). Величина аналитического промежутка 1,5 мм, ширина входной щели кван-тометра Хильгера 0,015 мм, выходной щели 0,035 мм. Продолжительность обжига 10 сек, экспозиции 30 сек. При нахождении про- [c.166]

    Каждая " из компонент тензора характеризует связь между. определенными компонентами напряжений и деформаций (рис. 239) . а, 33 [c.282]

    Коррозионно-усталостное разрушение, как правило, вызывается определенными компонентами окружающей среды, которые практически не оказывают значительного влияния на общую коррозию. Для коррозионно-усталостного разрушения характерно наличие большого количества трещин наряду с основной трещиной, по которой произошло разрушение. Если схема напряженного состояния одноосная, то трещины располагаются параллельно друг другу в плоскости, перпендикулярной направлению действия напряжений. При кручении группа трещин исходит из одной точки. Они часто имеют форму перекрестий или звезд, расположенных приблизительно под углом 45° к оси кручения. При растрескивании труб, обусловленном действием термических напряжений, наблюдают параллельные периферические трещины, причем часто проявляется вторая система трещин под большими углами к первым, т. е. расположенными параллельно приложенным напряжениям (рис. 5.46). Иногда из трещины выделяются продукты коррозии и обычно гладкие участки поверхностей излома покрыты [c.292]

    Одновременное определение изменений напряжения и компонент полной деформации при вытягивании ПВХ волокон, а также проч] Юсти волокон, застеклованных после вытягивания, позволило установить взаимосвязь между этими характеристиками [1]. [c.404]

    В то же время при определении компонентов деформаций и смещений контура выработки-емкости, обусловленных в том числе неупругим состоянием массива и его разрушением, учитывается только дополнительное напряженное состояние, т. е. возмущение начального напряженного состояния массива в результате сооружения выработки-емкости. Для этого из компонентов деформаций и смещений, определенных в результате решения задачи с учетом полных напряжений, вычитаются компоненты так называемых начальных деформаций и смещений, соответствующих напряженному состоянию ненарушенного массива и определяемых в результате решения задачи, как правило упругой, для того же расчетного фрагмента, но уже не содержащего выработку-емкость. Такой подход к определению деформаций и смещений, вызванных сооружением выработки-емко-сти, не случаен и отражает очевидный факт их отсутствия в породном массиве на значительном удалении от выработки-емко-сти, т. е. вне зоны ее влияния. [c.71]

    За предельное напряжение Одр принимается одно из значений компонент тензора напряжений или их определенное сочетание, при котором наступает текучесть, разрушение или нарушение первоначальной формы изделия. Обычно в условиях статического нагружения за величину [c.25]

    Процесс образования новых поверхностей в новом теле под нагрузкой связывают с явлением разрушения. Если тело изолировано от внешней среды, разрушение происходит без потери массы. В противном случае разрушение сопровождается с той или иной степенью потери массы в зависимости от активности внешней среды. В некоторых случаях для возникновения разрушения необязательно приложение внешней нагрузки, например, при коррозионном воздействии, хотя в ряде случаев существенно ускоряет его. Разрушение рассматривается не как элементарный акт, а как процесс постепенного образования новых поверхностей в микро- и макромасштабах. В связи с этим механизм разрушения изучают в двух аспектах физика разрушения, базирующаяся на атомных, дислокационных и других моделях и механика разрушения, в основу которой положены модели и реальные конструкции с макроскопическими дефектами (трещинами). В процессе нагружения твердого тела совершается работа и в материале возникают силы сопротивления деформированию, оцениваемые компонентами тензора напряжений и деформаций. В определенный момент времени какой-либо механический фактор Q (движущая сила разрушения) достигает некоторого критического значения К (рис.2.7), после чего конструкция переходит в новое состояние (текучесть, разрушение, изменение первоначаль- [c.75]


    Для определения модулей упругости изотропного тела (параметров Ламе А. и х, модуля Юнга Е и коэффициента Пуассона >) в эксперименте образцы подвергают таким испытаниям, прп которых создаются легко контролируемые виды напряженного и деформированного состояния. Классическим из таких испытаний является растяжение образца — прямого (пе обязательно кругового) цилиндра — равномерно распределенной по основаниям нагрузкой интенсивности д. Практически состояние чистого растяжения реализуется в средней части длинного образца, достаточно удаленной от захватов испытательного устройства. Если выбрать систему координат так, чтобы ось была параллельна образующим цилиндра, а две другие оси лежали в плоскости поперечного сечения, то матрица компонент тензора напряжений будет иметь вид [c.35]

    Мы считаем, что продукты коррозии накапливаются только в порах с большим капиллярным потенциалом. Если размер поры меньше, чем размер образующегося продукта коррозии, то условий для осаждения продуктов коррозии нет. Для каждого вида продукта коррозии существует определенная зона размеров пор, в которых накапливаются нерастворимые компоненты реакции, приводящие к возникновению внутренних растягивающих напряжений в этих порах и, как следствие, к разрушению камня. Косвенным доказательством данной гипотезы служат результаты исследований, показавших, что в химическую реакцию, приводящую к объемному разрушению камня, вступает незначительная (3-10%) часть продуктов твердения. [c.53]

    В эффективной деятельности человек использует только необходимые для решения задачи функции (воспринимающие, анализаторные, моторные). Избыток этих функций увеличивает время выполнения задачи, способствует возникновению ошибок, развивает утомляемость, делает работу напряженной [16, 30]. Каждому виду оптимальной деятельности, следовательно, соответствует конкретный комплекс анализаторных и исполнительских свойств человека физических (сила, выносливость, рабочая поза, скорость, точность, статическая и динамическая соразмерность частей тела зон движения, моторных действий), психофизиологических (прием и переработка информации, психомоторные, двигательные акты) и психологических (восприятие, представление, внимание, память, мышление, речь, эмоции). Поэтому комплексное соответствие указанных свойств работающего требованиям реализуемой производственной функции является основным условием эффективной и безопасной работы. Новые эргономические принципы анализа деятельности человека и его ошибок должны представлять возможность для разносторонней дифференциации (разделение, квантификации) процесса труда на физическом, психофизиологическом и психическом уровнях. Это необходимо для определения конкретного компонента (элементарной функции, психофизиологического акта, оперативной единицы, психологического процесса, элемента), при реализации которого проявился травмирующий фактор, произошел несчастный случай, авария. [c.213]

    Величина Лр в углепластиках неразрывно связана с общим временем релаксации композиции в период протекания процесса прессования. Это время, в свою очередь, зависит как от величин давления и содержания экстрагируемых вешеств, так и от температуры прессования и выдержки при этой температуре. На время релаксации будут значительно влиять и свойства отдельных компонентов композиции, а также характер их взаимодействия. Естественно, чем больше время релаксации, тем выше величина а согласно выражению (3), и выше уровень разрушающих материал напряжений. Однако ввиду несоизмеримости времен релаксации и прессования величина 1)р в данных материалах главным образом зависит от величины прикладываемого усилия прессования. Величина Су при прочих неизменных условиях прессования будет в определенных пределах возрастать с увеличением содержания экстрагируемых веществ в прессмассе. [c.200]

    До сих пор рассматривалось напряженное состояние в некоторой точке системы. Для условий равновесия можно получить определенные соотношения, описывающие закономерность изменения напряжений при переходе от точки к точке. Эти соотношения можно получить либо из баланса сил, действующих на бесконечно малый дифференциальный элемент среды, либо из уравнения движения (которое также является результатом подобного общего баланса сил), полагая все компоненты скорости и градиенты гидростатического давления равными нулю. Для любого плоского сечения можно получить следующие два уравнения равновесия  [c.226]

    Механический подход как основа различных инженерных теорий, применяемых для расчета прочности образцов различных форм, различных деталей машин и изделий, находящихся в сложнонапряженном состоянии, характеризуется тем, что разрушение рассматривается как результат потери устойчивости образцов или изделий, находящихся в поле внешних и внутренних напряжений [11.2—11.5]. Считается, что для каждого материала имеется определенное предельное напряжение (или комбинация компонентов тензора напряжения), при котором изделие теряет устойчивость и разрывается. Это напряжение принимается за критерий прочности материала или изделия. [c.283]

    Для определения напряжения в вершине микротрещины о воспользуемся результатами механики хрупкого разрушения. При рассмотрении идеально упругого образца с поперечным боковым разрезом длины I (при отсутствии внешнего растягивающего напряжения оба берега разреза совпадают, т. е. разрез при этом имеет нулевую толщину) получим следующее выражение для поперечного компонента напряжения в плоскости разреза л = 0 при г/ О  [c.299]

    В качестве источников излучения, специфичных для атомов различных элементов, обычно применяют газоразрядные трубки с полым катодом. Цилиндрический полый катод изготавливают из элемента, резонансное излучение которого должно быть возбуждено работу проводят при напряжении 400 В и силе тока 100 мА. В качестве материала катода иногда используют сплавы, тогда получают резонансные частоты излучения ряда элементов в одной трубке например, сплавы меди, цинка и свинца можно использовать для одновременного определения этих трех элементов. Однако при этом существует возможность изменения состава сплавов на поверхности катода из-за неравномерного испарения и, как следствие, изменение интенсивности излучения наиболее летучего компонента. [c.379]

    В действительности квадрупольный момент является тензором, а электрический момент диполя — вектором. Их взаимодействие с цеолитом надо рассчитывать с учетом соответствующих компонент и локального градиента напряженности электростатического поля в полости цеолита или представить общий квадрупольный (дипольный) момент как систему зарядов, распределенных на атомах или связях молекулы, и включить их взаимодействие с ионами решетки цеолита в атом-ионную потенциальную функцию. Последний путь является, вероятно, более правильным, однако он связан с трудностью решения задачи о распределении зарядов по атомам молекулы, которое, в свою очередь, может зависеть от напряженности поля в полости цеолита. Сделанные для СО2 расчеты на основе квантово-химических определений зарядов на атомах дали удовлетворительные результаты. [c.219]

    В сосуд для титрования (см. рис. 12, г) наливают 50 мл анализируемого (0,1—0,05 н.) раствора, погружают электроды с мешалкой, включают мотор для вращения ванны и милливольтметр. При помош,и делителя напряжений стрелку милливольтметра устанавливают в такое положение, при котором кондуктометрическая кривая может полностью разместиться на ленте. Если электропроводность раствора при титровании понижается, стрелку устанавливают в верхней части шкалы, если повышается— в нижней. Затем прибор устанавливают так, чтобы отводная трубка сосуда Мариотта (см. рис. 14) находилась над ячейкой. Включают регистрирующую часть милливольтметра и при нанесении второго показания на ленту начинают подачу стандартного раствора. Запись кривой заканчивают при избытке титранта. После окончания титрования электроды вынимают и удаляют из ячейки раствор. Промывают ячейку и электроды дистиллированной водой и проводят параллельные определения. На кондуктометрических кривых графическим методом устанавливают точки эквивалентности и определяют количество интервалов между записью показаний милливольтметра до ее изломов. Десятые доли интервалов вблизи точки эквивалентности находят на глаз. Продолжительность титрования зависит от числа определяемых компонентов и достигает 5—20 мин. [c.106]

    Импульсная полярография, В определенный момент времени, например через две секунды после начала образования капли, к ка пельному электроду прикладывают импульс напряжения определенной длительности, например 0,05 с [30, 32, 417]. Импульс напряжения либо постоянен по амплитуде и накладывается на линейно возрастаю щий потенциал (рис. 13, в), либо имеет возрастающую амплитуду при постоянном потенциале (рис. 13, г). В обоих случаях импульс тока из меряют во время последней части каждого импульса, когда ток заря жения двойного слоя уменьшается до пренебрежимо малой величи ны, как и в квадратно волновой полярографии. Регистрируется лишь переменная компонента тока, связанная с модуляцией импульса. Им пульс можно сделать гораздо более длительным, чем в квадратно вол новом методе, где он должен быть значительно короче по сравнению с временем жизни капли. Следовательно, в импульсной полярографии [c.222]

    Во всех термокондуктометрических газоанализаторах определение концентрации газа осуществляется путем сравнения теплопроводностей анализируемой и эталонной газовых смесей соответственно в рабочих и сравнительных камерах. Эталонной смесью служит газовая смесь постоянного состава, ею заполняется сравнительная камера и герметично закрывается. Рабочий и сравнительные преобразовательные элементы включаются в плечи мостовой измеригельной схемы. При изменении концентрации определенного компонента в анализируемой газовой смеси сопротивление рабочего преобразовательного элемента увеличивается или уменьшается, что приводит к разбалансу мостовой измерительной схемы, и в измерительной диагонали моста появляется выходной сигаал (по напряжению или то1 ), пропорциональный концентрации определяемого компонента. [c.698]

    Разделение и определение компонентов, входящих в состав стирола и а-метилстирола, осуществлялось на аргоновом хроматографе фирмы Пай , Колонка длиной 120 см, диаметром 4 мм была заполнена диатомитовым кирпичом зернением 0,12—0,25 ММ пропитанным 30% полиэтиленгликольадипата. Температура анализа составляла 75°, расход газа-носителя (аргона) 40 мл1мин, напряжение детектора 1500 в, объем пробы 0,05 мкл. [c.61]

    При неодноосном сжатии среды под действием тензора напряжений о - компоненты тензора деформаций определяются формулой (2.37). Рассмотрим для определенности канал, ориентированный параллельно главной оси г = 1. Изменение его поперечного сечения определяется величинами 2 и з - составляющими деформации, перпендикулярными к его оси. Полагая, что сечение канала 5/ пропорционально произведению его размеров в направлениях, перпендикулярных к его оси, получаем 31 (г + 0,51 2) (г + 0,51%). Соответственно, эффективный радиус канала = sf Если выполняется условие 0,5/ 2,з то изменение эффективного радиуса канала в первом приближении [c.43]

    Параме1р а определяется методами сопротивления материалов, теории упругости, механики трещин и др. и включает в себя компоненты тензора напряжений, зависящие от геометрических характеристик конструкции, внешних силовых нагрузок, упругих свойств материала и др. Коэффициент запаса прочности характеризует уровень напряжений при эксплуатации изделия и устанавливается в зависимости от условий работы на основании статистических данных о работоспособности подобных конструкций. Параметр п косвенно оценивает качество технологии изготовления, расчетов на прочность, материала и др. За предельное напряжение а р принимается одно из значений компонентов тензора напряжений или их определенное сочетание, при котором наступает текучесть, разрушение или нарушение первоначальной формы изделия. Обычно в условиях статического нагруж ения за величину стпр принимают либо предел текучести СТт, либо временное [c.98]

    В решении задач методом конечных элементов для конструкций, состоящих из оболочечных и узловых кольцевых элементов, вводят понятие матрицы жесткости и вектора краевых обобщенных усилий на торцах этого элемента. Определение элементов матриц жесткости, компонент вектора обобщенных усилий на торцах оболочечного элемента, а также напряженно-деформированного состояния этих элементов по найденным краевым с.мещения.м сводится к решению нормальной системы обыкновенных дифференциальных уравнений. Эта система дифференциальных уравнений решается методом ортогональной подгонки с промежуточньш ортонормированием по Годунову. Программное математическое обеспечение вышеописанной методики состоит из следующих разделов  [c.173]

    Рекристаллизация твердых тел как с изменением химического состава кристаллов, так и с сохранением его заключается в образовании одних зерен тела за счет других и протекает особенно интенсивно в пластически деформированных телах (например, катализаторы, получаемые смешением Компонентов с введением связующих добавок). Внешне рекристаллизация проявляется в изменении размеров и количества кристаллов. Движущей силой этого процесса считают уменьшение термодинамического потенциала катализатора в результате снижения суммарной поверхности границ кежду зернами или снятие искажений и напряжений в кристаллической решетке [5, 6]. Кинетика рекристаллизации характеризуется скоростью зарождения центров и линейной скоростью роста новых кристаллов. Значения этих величин зависят в первую очередь от чистоты твердого тела, степени его деформации и размера зерен [7—14]. Установлено, что чистые вещества рекристаллизуются особенно интейсивно. Малые количества примесей (иногда < 0,01 %) могут уменьшать скорость рекристаллизации на несколько порядков [5, 7—10]. Влияние температуры на скорость зарождения и роста кристаллов при определенной степени деформации катализатора приближенно выражается уравнением Аррениуса. [c.59]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]

    При алкилировании требуется определенная производительность перемешивающего устройства, чтобы подде рживать однородность смеси компонентов в каждой фазе, однородность и равномерность распределения диспдргированной фазы в непрерывной. Диспергированная фаза, в свою очередь, требует определенных напряжений сдвига для создания межфазной поверхности, через которую идет массопередача. Без соответствующих экспериментов невозможно знать необходимые значения перечисленных факторов. [c.196]

    Изучение потенциалов ионизации сложных органических молекул и потенциалов появления осколочных ионов открыло широкие перспективы для аналитического применения низких ионизирующих напряжений. Масс-спектр, получаемый при ионизации многоатомных молекул электронами с энергией 50—70 эв, представляет собой совокупность молекулярных и осколочных ионов. Если ионизирующее напряжение больше потенциала ионизации, но меньше потенциала появления осколочных ионов, то масс-спектр анализируемого соединения будет содержать только один пик, отвечающий молекулярному иону. Такое упрощение масс-спектра обладает определенными преимуществами и может быть использовано для качестве1гного анализа смесей, а при наличии соответствующих калибровочных данных и для количественного определения концентрации компонентов в смеси. При этом исключаются сложные вычисления, неизбежные при расчетах обычных масс-спектров. [c.185]

    Для численного определения величины Стс необходимо знать значения нормальных компонент тензора напряжений. При компактировании дисперсного материала в цилиндрической матрице с жесткими стенками сжатие материала происходит в одном направлении (без возможности его бокового расширения). Для этого случая zz = р, Стгт сг ф<р= р и Ос = (1 + 2 )р/3, где -коэффициент бокового давления Стш, а , - соответственно осевое, [c.41]

    Я — малая величина. При определенных соотношениях V и АЕ и при ЕаФЕк происходит значительная поляризация электродов анода и/или катода. Поэтому изменение электродного потенциала как функции изменения активности потенциалопределяющего компонента за счет химической реакции сравнительно мало. В этих условиях целесообразно измерить I и установить зависимость (а). Если же один из электродов неполяризуем (электрод сравнения), а другой имеет малую поверхность (микроэлектрод), то налагаемое извне напряжение практически определяет потенциал микроэлектрода (при условии 1Я — мало). [c.101]

    Принцип метода заключается в том, что на электрод равномерно подают постоян1[ое напряжение, а примерно за 1/25 с до конца существования капли подают дополнительный импульс постоянного напряжения, например 50 мВ. Перед подачей дополнительного наг(ряжения ток автоматически компенсируют. Для устранения влияния дополнительного емкостного тока дополнительный фарадеев ток регистрируют только в конце полупериода. В результате компенсации влияние емюостнопо тока устраняется для всех компонентов раствора, х ля которых уже достигнуто значение предельного тока. Более положительные деполяризаторы даже в 10000-кратном избытке при этом не мешают определению. Кроме того, метод пригоден для обратимых и необратимых электродных процесоов, поскольку используют импульс постоянного напряжения. [c.305]


Смотреть страницы где упоминается термин Напряжения определение компонентов: [c.40]    [c.15]    [c.81]    [c.260]    [c.47]    [c.113]    [c.98]    [c.283]    [c.394]   
Механические свойства твёрдых полимеров (1975) -- [ c.28 , c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Компонент, определение



© 2025 chem21.info Реклама на сайте