Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Токсин холеры

Рис. 2.15, Схема пептидных структур трех бактериальных токсинов. Все эти токсины состоят из легкой и тяжелой цепей, соединенных дисульфидной связью. Тяжелые цепи содержат центры связывания с мембраной и образуют каналы в мембране, которые могут функционировать как туннели , позволяющие переместить активный фрагмент (локализованный на легкой цепи) внутрь зараженных клеток. Как и в случае токсина холеры, активный фрагмент дифтерийного токсина (ни один из них не является нейротоксином ) катализирует рибозилирование определенных белков. Активность легких цепей столбнячного и ботулинического токсинов не установлена. Рис. 2.15, Схема пептидных структур трех <a href="/info/76571">бактериальных токсинов</a>. Все эти токсины состоят из <a href="/info/135671">легкой</a> и <a href="/info/510843">тяжелой цепей</a>, соединенных <a href="/info/150016">дисульфидной связью</a>. <a href="/info/510843">Тяжелые цепи</a> содержат <a href="/info/105482">центры связывания</a> с мембраной и образуют каналы в мембране, которые могут функционировать как туннели , позволяющие переместить <a href="/info/1034065">активный фрагмент</a> (локализованный на <a href="/info/1357074">легкой цепи</a>) внутрь зараженных клеток. Как и в случае токсина холеры, <a href="/info/1034065">активный фрагмент</a> <a href="/info/99379">дифтерийного токсина</a> (ни один из них не является <a href="/info/82691">нейротоксином</a> ) катализирует <a href="/info/166467">рибозилирование</a> <a href="/info/102583">определенных белков</a>. Активность <a href="/info/1357074">легких цепей</a> столбнячного и <a href="/info/265939">ботулинического токсинов</a> не установлена.

    Активная субъединица токсина холеры Агароза [c.297]

    Г. широко распространены в тканях животных, особенно в мозге. В растениях и микроорганизмах не встречаются. Локализованы в осн. на пов-сти плазматич. мембраны клетки. Как и др. гликосфинголипиды участвуют в процессах регуляции роста и адгезии клеток, межклеточных взаимодействиях, нммунологич. процессах. Могут входить в состав рецепторов токсинов напр., GM, входит в состав рецептора токсина холеры), пептидных гормонов, нек-рых вирусов и интерферона. [c.502]

    Оба типа -рецепторов стимулируют аденилатциклазу. Они отличаются участками распознавания лиганда R. С совершенно иной ситуацией мы встречаемся в случае сс-адренэргических рецепторов. Здесь, напротив, ai регулирует в основном внутриклеточный уровень другого вторичного мессенджера — Са-+, тогда как 2 не только не активирует аденилат-циклазу, но, по-видимому, и ингибирует ее. В настоящее время считается, что сс2-рецепторы взаимодействуют с аденилатциклазой (С) через ингибиторный регуляторный белок (N, G). Имеются два различных типа таких регуляторных белков стимулирующие (Ns) и ингибирующие (Л /). Белки обоих типов были выделены и очищены (из печени, мозга и эритроцитов), была определена и их четвертичная структура. Они состоят из трех различных полипептидов, два из которых ( , "f) идентичны для обоих белков. N-Белки являются также центрами действия экзогенных факторов, таких, например, как F или бактериальные токсины холеры и коклюша (о структуре и функции токсина холеры см. гл. 2). Краткий обзор современных знаний о структуре и регуляции передачи сигнала через адреноцепторы представлен на рис. 9.14, а и б. Рис. 9.14,6 описывает также некоторые детали механизма последовательного взаимодействия R, N и С видно, что медиатор или гормон вначале активирует N путем взаимодействия с рецептором. Активация N основана на замене GDP на GTP. Активированный N взаимодействует затем с С. Такое взаимодействие носит временный характер, поскольку N инактивирует сам себя путем расщепления связанного GTP под действием присущей ему ОТРазной активности. Еще раз интересно отметить сходство этого процесса с взаимодействием родопсина, трансдуцина и фосфодиэстеразы, обнаруженным в зрительном процессе (гл. 1). Такое сходство — это нечто большее, чем просто аналогия. [c.277]

    Токсины как инструменты исследования. Токсины холеры и коклюша приводят к ADP-рибозилированию N-белков  [c.279]

    Мы уже сталкивались с примерами использования природных токсинов в качестве инструментов для исследования ключевых нейрохимических механизмов или для выделения важных молекул нервной системы (см. с. 146). Здесь приводится еще один пример такой технологии . Регуляторные N-белки являются мишенью действия ряда бактериальных экзотоксинов. Как уже указывалось на с. 52 и на рис. 9,14,6, токсин холеры поддерживает постоянную активность аденилатциклазы путем активирования Ns. Механизм этого эффекта основан на ADP-рибози-лировании, т. е. переносе ADP-рибозы с NAD на а-субъединицу Ni. Следствием такой ковалентной модификации является диссоциация Ns на субъединицы, причем субъединицей, взаимодействующей с аденилатциклазой, на стадии активации фермента является as. В интактном Ns-комплексе этому препятствует -субъединица, и именно выделение as при диссоциации Ns и приводит к активации аденилатциклазы. [c.279]


    Помимо получения растений с измененными запасными белками было показано, что трансгенные растения могут быть использованы в качестве производителей съедобных вакцин. Так, получены растения табака и картофеля, синтезирующие иммуноглобулин А — С, энтеротоксин, В-токсин холеры, белок поверхностного антигена гепатита В. Белок, полученный из трансгенных растений, обладал такими же антигенными и физиологическими свойствами, как и белок, полученный из животных клеток. В настоящее время проводятся испытания по вакцинированию человека против гепатита В с помощью трансгенных растений. Из этого следует, что использование трансгенных растений может привести в будущем к получению дешевых и биологически высокоактивных вакцин. [c.68]


Смотреть страницы где упоминается термин Токсин холеры: [c.52]    [c.62]    [c.278]    [c.361]    [c.307]    [c.307]    [c.142]   
Биохимия Том 3 (1980) -- [ c.71 ]

Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте