Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса пластичный

    Черный фосфор получают из белого при нагревании его до 200 °С под высоким давлением (свыше 12-10 кПа). По внешнему виду он напоминает графит, жирен на ош,упь, тяжелее других модификаций (плотность 2,7 г/см ), является полупроводником, воспламеняется при 490 °С, В химическом отношении он очень инертен. Пластичность и инертность черного фосфора обусловлены тем, что он имеет атомную пространственную кристаллическую решетку слоистого строения. Кристалл состоит из параллельных плоскостей, слабо связанных силами Ван-дер-Ваальса расстояние между слоями 0,324 нм  [c.357]


    Структуры бывают коагуляционные и конденсационные (кристаллизационные). Первые образуются за счет слабых водородных связей или сил Ван-дер-Ваальса, легко разрушаются при механических воздействиях и через некоторое время могут самопроизвольно восстановиться. Это явление получило название тиксотропии. Примером тиксо-тропных систем могут служить золи Ре(ОН)з и УаОб, суспензии бентонитовых глин, минеральные краски, растворы некоторых полуколлоидных и высокомолекулярных соединений и др. Тиксотропные системы обычно проявляют пластичные свойства. [c.45]

    Вид поверхностей разрушения приводит к выводу, что материал под влиянием локального напряжения при вершине треш,ины ведет себя как пластичный, а не как хрупкий, несмотря на то что макроскопические свойства материала позволяют характеризовать - его как хрупкий. Такие пластические деформации материала состоят в значительных перемещениях сегментов цепей, что вызывает рассеяние энергии. В этом процессе участвуют скорее вторичные силы Ван-дер-Ваальса, чем первичные ковалентные связи [4]. Следует ожидать, что экспериментальные условия и изменения молекулярной и надмолекулярной структур будут оказывать значительное влияние на поведение материала. [c.92]

    Следующее положение, которым руководствуются при выборе растворителей для ПИНС (или жидкой масляной среды для масел с присадками и пластичных смазок), формулируется таким образом компоненты растворителей или смеси растворителей должны образовывать между собой так называемые активированные молекулярные комплексы , т. е. флуктуационные, вероятностные образования с квазикристаллическими ядрами и возбужденными молекулами. Наличие таких комплексов объясняется тем, что обмен энергией между молекулами осуществляется через центры межмолекулярных взаимодействий, при которых молекулы растворителя выступают в роли гармонических осцилляторов. Реализуется эта энергия в виде резонансных переходов и может быть сосредоточена на одном из атомов возбужденной молекулы. Данная энергия сопоставима с энергией сил Ван-дер-Ваальса, но имеет огромное значение для теории смешанных растворителей и особенно для растворителей с маслорастворимыми ПАВ. [c.66]

    Эти же атомы и группировки, наряду с общей длиной и структурой макромолекулы, определяют и весь тот комплекс свойств,, которые называют обычно физическими (растворимость, морозостойкость, термостойкость, пластичность, эластичность, твердость, и т. п.). От этого зависят силы взаимодействия между отдельными цепями, т. е. величина того эффекта, который называют по-прежнему силами Ван-дер-Ваальса, но уже нередко связывают с особенностями строения и объясняют наличием тех йли иных групп, приводящих к образованию той или иной специфической химической связи. [c.169]


    Убедительным примером применимости теории регулирования механических свойств дисперсных структур могут быть водные гели и органогели гуминовых веществ — природных ионсобменников и структурообразователей почв. Так, структурно-механический анализ дисперсий гуминовых кислот и полученных на их основе гуматов кальция, магния и кобальта показал, что в этих системах при малом содержании твердой фазы (5—10%) образуются типичные коагуляционные структуры со всеми присущими им упруго-пластично-вязкими свойствами и способностью к тиксотропному упрочнению. Установлено, что наибольшая склонность к структурообразованию среди образцов гуминовых веществ (гуминовые кислоты, гуматы металлов) выражена у гуминовых кислот, о объясняется тем, что в гуминовых кислотах, в отличие от гуматов кальция, магния, кобальта и др., функциональные группы свободны , а поэтому их дисперсные частички легко взаимодействуют друг с другом не только за счет сил Ван дер Ваальса, но и по водородным связям. [c.253]

    С поглощением воды глинистыми минералами связаны технологически важные свойства глин — пластичность, прочность и плотность. Пластичность, прежде всего, обусловлена легким скольжением слоев в кристаллах. Связи в пределах двух- и трехслойных пакетов вследствие ионной поляризации весьма сильны и очень слабы между пакетами. Проникновение молекул воды в межпакетные пространства и адсорбция их силами Ван-дер-Ваальса облегчает скольжение и придает мокрой глине значительную пластичность, что, в свою очередь, приводит к улучще-нию ее формовочных свойств. Пластичность зависит от толщины адсорбированного слоя воды, от размера, формы и поверхности глинистых минералов, а также от сорта адсорбированных катионов. На пластичность монтмориллонитов значительное влияние оказывает сорт межпакетных катионов. Так, Са + сильнее связывают пакеты, чем Ка+ и затрудняют тем самым проникновение молекул воды в межпакетное пространство. Для увеличения пластичности монтмориллонитов (бентонитов) глины погружают в [c.323]


Процессы химической технологии (1958) -- [ c.116 , c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Пластичность



© 2024 chem21.info Реклама на сайте